We study the robustness of exponentially $κ$-dissipative dynamical systems with perturbed parameters $\varepsilon∈ E(\subset\mathbb{R})$. In particular, under some proper assumptions, we will construct a family of compact sets $\{\mathcal A_\varepsilon\}_{\varepsilon∈ E}$, which is positive invariant, uniformly exponentially attracting and equi-continuous. At last, an application to a Kirchhoff wave model is given.
Citation: |
[1] |
R. Araújo, T. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087.
doi: 10.1016/j.jde.2013.02.010.![]() ![]() ![]() |
[2] |
A. Caixeta, I. Lasiecka and V. Cavalcanti, Global attractors for a third order in time nonlinear dynamics, J. Differential Equations, 261 (2016), 113-147.
doi: 10.1016/j.jde.2016.03.006.![]() ![]() ![]() |
[3] |
A. Carvalho, J. Cholewa and T. Dlotko, Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation, Proc. Roy. Soc. Edinburgh, 144 (2014), 13-51.
doi: 10.1017/S0308210511001235.![]() ![]() ![]() |
[4] |
A. Carvalho and J. Cholewa, Exponential global attractors for semigroups in metric spaces with applications to differential equations, Ergod. Th. & Dynam. Sys., 31 (2011), 1641-1667.
doi: 10.1017/S0143385710000702.![]() ![]() ![]() |
[5] |
A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer-Verlag, (2013).
doi: 10.1007/978-1-4614-4581-4.![]() ![]() ![]() |
[6] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.
doi: 10.1016/j.jde.2011.08.022.![]() ![]() ![]() |
[7] |
I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp.
doi: 10.1090/memo/0912.![]() ![]() ![]() |
[8] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, (1985).
doi: 10.1007/978-3-662-00547-7.![]() ![]() ![]() |
[9] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Ensembles inertiels pour des équations d'évolution dissipatives, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 559-562.
![]() ![]() |
[10] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam,
Exponential attractors for Dissipative Evolution Equations, John Wiley & Sons, Chichester, 1994.
![]() ![]() |
[11] |
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703-730.
doi: 10.1017/S030821050000408X.![]() ![]() ![]() |
[12] |
M. Grasselli and H. Wu, Robust exponential attractors for the modified phase-field crystal equation, Discrete Cont. Dyn. Syst., 35 (2015), 2539-2564.
doi: 10.3934/dcds.2015.35.2539.![]() ![]() ![]() |
[13] |
A. Khanmamedov, Strongly damped wave equation with exponential nonlinearities, J. Math. Anal. Appl., 419 (2014), 663-687.
doi: 10.1016/j.jmaa.2014.05.010.![]() ![]() ![]() |
[14] |
P. Kloeden, J. Real and C. Sun, Robust exponential attractors for non-autonomous equations with memory, Commun. Pure Appl. Anal., 10 (2011), 885-915.
doi: 10.3934/cpaa.2011.10.885.![]() ![]() ![]() |
[15] |
D. Li and P. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters, Glasgow Math. J., 46 (2004), 131-141.
doi: 10.1017/S0017089503001605.![]() ![]() ![]() |
[16] |
A. Miranville, V. Pata and S. Zelik, Exponential attractors for singular perturbed damped wave equations: A simple construction, Asymptotic Anal., 53 (2007), 1-12.
![]() ![]() |
[17] |
M. Nakao, An attractor for a nonlinear dissipative wave equation of Kirchhoff type, J. Math. Anal. Appl., 353 (2009), 652-659.
doi: 10.1016/j.jmaa.2008.09.010.![]() ![]() ![]() |
[18] |
V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.
doi: 10.1088/0951-7715/19/7/001.![]() ![]() ![]() |
[19] |
F. Di Plinio and V. Pata, Robust exponential attractors for the strongly damped wave equation with memory. I, Russian Journal of Mathematical Physics, 15 (2008), 301-315.
doi: 10.1134/S1061920808030014.![]() ![]() ![]() |
[20] |
A. Savostianov and S. Zelik, Smooth attractors for the quintic wave equations with fractional damping, Asymptotic Anal., 87 (2014), 191-221.
doi: 10.3233/ASY-131208.![]() ![]() ![]() |
[21] |
M. Silva and T. Ma, Longtime dynamics for a class of Kirchhoff models with memory,
J. Math. Phy. , 54 (2013), 021505, 15pp.
doi: 10.1063/1.4792606.![]() ![]() ![]() |
[22] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[23] |
Y. Wang and C. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Cont. Dyn. Syst., 33 (2013), 3189-3209.
doi: 10.3934/dcds.2013.33.3189.![]() ![]() ![]() |
[24] |
Z. Yang, Longtime behavior of the Kirchhoff type equation with strong damping on $\mathbb{R}^N$, J. Differential Equations, 242 (2007), 269-286.
doi: 10.1016/j.jde.2007.08.004.![]() ![]() ![]() |
[25] |
Z. Yang and Y. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278.
doi: 10.1016/j.jde.2010.09.024.![]() ![]() ![]() |
[26] |
J. Zhang, P. Kloeden, M. Yang and C. Zhong, Global exponential $κ$-dissipative semigroups and exponential attraction, Discrete Cont. Dyn. Syst., 37 (2017), 3487-3502.
doi: 10.3934/dcds.2017148.![]() ![]() ![]() |