In this paper we analyze an optimal distributed control problem where the state equations are given by a stationary chemotaxis model coupled with the Navier-Stokes equations. We consider that the movement and the interaction of cells are occurring in a smooth bounded domain of $\mathbb{R}^n,n = 2,3,$ subject to homogeneous boundary conditions. We control the system through a distributed force and a coefficient of chemotactic sensitivity, leading the chemical concentration, the cell density, and the velocity field towards a given target concentration, density and velocity, respectively. In addition to the existence of optimal solution, we derive some optimality conditions.
Citation: |
F. Abergel
and E. Casas
, Some optimal control problems of multistate equations appearing in fluid mechanics, RAIRO Modél. Math. Anal. Numér., 27 (1993)
, 223-247.
doi: 10.1051/m2an/1993270202231.![]() ![]() ![]() |
|
S. Agmon
, A. Douglis
and L. Nirenberg
, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ., Commun. Pure Appl. Math., 12 (1959)
, 623-727.
doi: 10.1002/cpa.3160120405.![]() ![]() ![]() |
|
N. Bellomo
, A. Bellouquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
L. Cattabriga
, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961)
, 308-340.
![]() ![]() |
|
M. A. Chaplain
and G. Lolas
, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005)
, 1685-1734.
doi: 10.1142/S0218202505000947.![]() ![]() ![]() |
|
M. A. Chaplain
and A. Stuart
, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993)
, 149-168.
![]() |
|
F. W. Chaves-Silva
and S. Guerrero
, A uniform controllability result for the Keller-Segel system, Asymptot. Anal., 92 (2015)
, 313-338.
doi: 10.3233/ASY-141282.![]() ![]() ![]() |
|
F. W. Chaves-Silva
and S. Guerrero
, A controllability result for a chemotaxis-fluid model, J. Differential Equations, 262 (2017)
, 4863-4905.
doi: 10.1016/j.jde.2017.01.004.![]() ![]() ![]() |
|
M. del Pino
and J. Wei
, Collapsing steady states of the Keller-Segel system, Nonlinearity, 19 (2006)
, 661-684.
doi: 10.1088/0951-7715/19/3/007.![]() ![]() ![]() |
|
E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0.![]() ![]() ![]() |
|
M. Di Francesco
, A. Lorz
and P. Markowich
, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010)
, 1437-1453.
doi: 10.3934/dcds.2010.28.1437.![]() ![]() ![]() |
|
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
|
M. Gunzburger
, L. Hou
and T. Svobodny
, Boundary velocity control of incompressible flow with an application to viscous drag reduction, SIAM J. Control Optim., 30 (1992)
, 167-181.
doi: 10.1137/0330011.![]() ![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
A. A. Illarionov, Optimal boundary control of the steady flow of a viscous nonhomogeneous incompressible fluid, Math. Notes, 69 (2001), 614–624 (Translated from Mat. Zametki, 69 (2001), 666–678).
doi: 10.1023/A:1010297424324.![]() ![]() ![]() |
|
J. Jiang
and Y. Y. Zhang
, On convergence to equilibria for a chemotaxis model with volumefilling effect, Asymptot. Anal., 65 (2009)
, 79-102.
doi: 10.3233/ASY-2009-0948.![]() ![]() ![]() |
|
Y. Kabeya
and W. Ni
, Stationary Keller-Segel model with the linear sensitivity, Surikaisekikenkyusho Kokyuroku, (1998)
, 44-65.
![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Model for chemotaxis, J. Theor. Biol., 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
|
P. Laurençot
and D. Wrzosek
, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., 64 (2005)
, 273-290.
doi: 10.1007/3-7643-7385-7_16.![]() ![]() ![]() |
|
H.-C. Lee
and O. Y. Imanuvilov
, Analysis of Newmann boundary optimal control problems for the stationary Boussinesq equations including solid media, SIAM J. Control Optim., 39 (2000)
, 457-477.
doi: 10.1137/S0363012998347110.![]() ![]() ![]() |
|
C.-S. Lin
, W.-M. Ni
and I. Takagi
, Large amplitude stationary solutions to a Chemotaxis system, J. Differential Equations, 72 (1988)
, 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
|
J.-G. Liu
and A. Lorz
, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré. Anal. Non Linéare, 28 (2011)
, 643-652.
doi: 10.1016/j.anihpc.2011.04.005.![]() ![]() ![]() |
|
E. Mallea-Zepeda
, E. Ortega-Torres
and E. J. Villamizar-Roa
, A boundary control problem for micropolar fluids, J. Optim. Theory Appl., 169 (2016)
, 349-369.
doi: 10.1007/s10957-016-0925-y.![]() ![]() ![]() |
|
N. V. Mantzaris
, S. Webb
and H. G. Othmer
, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol., 49 (2004)
, 111-187.
doi: 10.1007/s00285-003-0262-2.![]() ![]() ![]() |
|
M. Musso
and J. Wei
, Stationary solutions to Keller-Segel chemotaxis system, Asymptot. Anal., 49 (2006)
, 217-247.
![]() ![]() |
|
A. Pistoia
and G. Vaira
, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015)
, 203-222.
doi: 10.1017/S0308210513000619.![]() ![]() ![]() |
|
A. Potapov
and T. Hillen
, Metastability in chemotaxis models, J. Dynam. Differential Equations, 17 (2005)
, 293-330.
doi: 10.1007/s10884-005-2938-3.![]() ![]() ![]() |
|
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967.
![]() ![]() |
|
R. Schaaf
, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985)
, 531-556.
doi: 10.1090/S0002-9947-1985-0808736-1.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012)
, 1901-1914.
doi: 10.3934/dcds.2012.32.1901.![]() ![]() ![]() |
|
M. J. Tindall
, P. K. Maini
, S. L. Porter
and J. P. Armitage
, Overview of mathematical approaches used to model bacterial chemotaxis Ⅱ: Bacterial populations, Bulletin of Mathematical Biology, 70 (2008)
, 1570-1607.
doi: 10.1007/s11538-008-9322-5.![]() ![]() ![]() |
|
R. Tyson
, S. Lubkin
and J. D. Murray
, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999)
, 359-375.
doi: 10.1007/s002850050153.![]() ![]() ![]() |
|
M. Winkler
, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012)
, 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
|
D. Woodward
, R. Tyson
, M. Myerscough
, J. D. Murray
, E. Budrene
and H. Berg
, Spatiotemporal patterns generated by salmonella typhimurium, Biophysical Journal, 68 (1995)
, 2181-2189.
doi: 10.1016/S0006-3495(95)80400-5.![]() ![]() |
|
X. Ye
, Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model, J. Math. Anal. Appl., 427 (2015)
, 60-73.
doi: 10.1016/j.jmaa.2015.02.023.![]() ![]() ![]() |