|
L. J. S. Allen,
An Introduction to Stochastic Processes with Applications to Biology, Pearson Education, INC. , Upper Saddle River, NJ, 2003.
|
|
E. Almaraz
, A. Gómez-Corral
and M. T. Rodríguez-Bernal
, On the time to reach a critical number of infections in epidemic models with infective and susceptible immigrants, Biosystems, 144 (2016)
, 68-77.
|
|
S. Al-Sheikh
, Modeling and Analysis of an SEIR epidemic model with a limited resource for treatment, GJSFR-F, 12 (2012)
, 57-66.
|
|
J. Amador
, The stochastic SIRA model for computer viruses, Appl. Math. Comput., 232 (2014)
, 1112-1124.
doi: 10.1016/j.amc.2014.01.125.
|
|
J. Amador
and J. R. Artalejo
, Stochastic modeling of computer virus spreading with warning signals, J. Franklin Inst., 350 (2013)
, 1112-1138.
doi: 10.1016/j.jfranklin.2013.02.008.
|
|
J. Amador
and J. R. Artalejo
, Modelling computer virus with the BSDE approach, Comp. Networks, 57 (2013)
, 302-316.
|
|
J. R. Artalejo
and M. J. Lopez-Herrero
, Stochastic epidemic models: New behavioral indicators of the disease spreading, Appl. Math. Model., 38 (2014)
, 4371-4387.
doi: 10.1016/j.apm.2014.02.017.
|
|
J. R. Artalejo
, A. Economou
and M. J. Lopez-Herrero
, The maximum number of infected individuals in SIS epidemic models: Computational techniques and quasi-stationary distributions, J. Comput. Appl. Math., 233 (2010)
, 2563-2574.
doi: 10.1016/j.cam.2009.11.003.
|
|
J. R. Artalejo
, A. Economou
and M. J. Lopez-Herrero
, The stochastic SEIR model before extinction: Computational approaches, Appl. Math, Comput., 265 (2015)
, 1026-1043.
doi: 10.1016/j.amc.2015.05.141.
|
|
F. Ball
, A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models, Adv. Appl. Probab., 18 (1986)
, 289-310.
doi: 10.2307/1427301.
|
|
M. V. Barbarossa, A. Denes, G. Kiss, Y. Nakata, G. Rö st and Z. Vizi, Transmission dynamics and final epidemic size of Ebola virus disease outbreaks with varying interventions, PLoS one, (2015), http://dx.doi.org/10.1371/journal.pone.0131398
|
|
A. J. Black
and J. V. Ross
, Computation of epidemic final size distributions, J. Theor. Biol., 367 (2015)
, 159-165.
|
|
A. J. Black, N. Geard, J. M. McCaw, J. McVernon and J. V. Ross, Characterising pandemic severity and transmissibility from data collected during first few hundred studies, Epidemics, 19 (2017), 61–73. http://dx.doi.org/10.1016/j.epidem.2017.01.004
|
|
V. Capasso,
Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, 97 Springer, New York, 1993.
doi: 10.1007/978-3-540-70514-7.
|
|
V. Capasso
and G. Serio
, A generalization of the Kermack-McKendrick deterministic model, Math. Biosci., 42 (1978)
, 41-61.
doi: 10.1016/0025-5564(78)90006-8.
|
|
F. Capone
, V. De Cataldis
and R. De Luca
, On the nonlinear stability of an epidemic SEIR reaction-diffusion model, Ricerche Mat., 62 (2013)
, 161-181.
doi: 10.1007/s11587-013-0151-y.
|
|
S. Cui
and M. Bai
, Mathematical analysis of population migration and its effect to spread of epidemics, Discrete Cont. Dyn.-B, 20 (2015)
, 2819-2858.
doi: 10.3934/dcdsb.2015.20.2819.
|
|
D. J. Daley and J. Gani,
Epidemic Modelling: An Introduction, Cambridge Studies in Mathematical Biology, Vol. 15. Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511608834.
|
|
M. De la Sen
, S. Alonso-Quesada
and I. Ibeas
, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015)
, 953-976.
doi: 10.1016/j.amc.2015.08.099.
|
|
Z. Feng,
Applications of Epidemiological Models to Public Health Policy making. The Role of Heterogeneity in Model Predictions, World Scientific Publishing, Singapore, 2014.
|
|
A. Gómez-Corral
and M. López-García
, Modeling host-parasitoid interactions with correlated events, Appl. Math.Model., 37 (2013)
, 5452-5463.
|
|
A. Gómez-Corral and M. López-García, On SIR epidemic models with generally distributed infectious periods: Number of secondary cases and probability of infection, Int. J. Biomath. , 10 (2017), 1750024.
|
|
E. Grigorieva, E. Khailov and A. Korobeinikov, Optimal control for an epidemic in populations of varying size, in "Dynamical Systems, Differential Equations and Applications" (eds. M. de Leon, W. Feng, Z. Feng, J. Lopez-Gomez, X. Lu, J. M. Martell, J. Parcet, D. Peralta-Salas and W. Ruan), AIMS Proceedings, (2015), 549-561.
doi: 10.3934/proc.2015.0549.
|
|
P. Guo, X. Yang and Z. Yang, Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period,
Adv. Differ. Equ-NY, 2014 (2014), 18pp.
doi: 10.1186/1687-1847-2014-164.
|
|
H. W. Hethcote
and P. van den Driessche
, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991)
, 271-287.
doi: 10.1007/BF00160539.
|
|
T. House, J. V. Ross and D. Sirl, How big is an outbreak likely to be? Methods for epidemic
final size calculation, Proc. R. Soc. Lond. A, 469 (2013), article 20120436, 22pp.
doi: 10.1098/rspa.2012.0436.
|
|
H. F. Huo
and M. X. Zou
, Modelling effects of treatment at home on tuberculosis transmission dynamics, App. Math. Model., 40 (2016)
, 9474-9484.
doi: 10.1016/j.apm.2016.06.029.
|
|
W. O. Kermack
and A. G. McKendrick
, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927)
, 700-721.
|
|
Z. Liu
, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal. Real, 14 (2013)
, 1286-1299.
doi: 10.1016/j.nonrwa.2012.09.016.
|
|
Q. Liu
, D. Jiang
, N. Shi
, T. Hayat
and A. Alsaedi
, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Physica A, 462 (2016)
, 870-882.
doi: 10.1016/j.physa.2016.06.095.
|
|
M. J. Lopez-Herrero
, Epidemic transmission on SEIR stochastic models with nonlinear incidence rate, Math. Methods Appl. Sci., 40 (2017)
, 2532-2541.
doi: 10.1002/mma.4179.
|
|
M. F. Neuts and J. M. Li, An algorithmic study of S-I-R stochastic epidemic models, in: Lecture Notes in Statistics, 114, (eds. C. C. Heyde, Yu V. Prohorov, R. Pyke, S. T. Rachev), Athens Conference on Applied Probability and Time Series. Springer-Verlag, Heidelberg (1996), 295-306.
doi: 10.1007/978-1-4612-0749-8_21.
|
|
J. M. Ponciano and M. A. Capistrán, First principles modeling of nonlinear incidence rates
in seasonal epidemics, PLoS Comput. Biol. , 7 (2011), e1001079, 14pp.
doi: 10.1371/journal.pcbi.1001079.
|
|
S. Ruan
and W. Wang
, Dynamical behavior of an epidemic model with nonlinear incidence rate, J. Differ. Equations, 188 (2003)
, 135-163.
doi: 10.1016/S0022-0396(02)00089-X.
|
|
H. Shu
, D. Fan
and J. Wei
, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real, 13 (2012)
, 1581-1592.
doi: 10.1016/j.nonrwa.2011.11.016.
|
|
P. Stone
, H. Wilkinson-Herbots
and V. Isham
, A stochastic model for head-lice infections, J. Math. Biol., 56 (2008)
, 743-763.
doi: 10.1007/s00285-007-0136-0.
|
|
S. Tipsri
and W. Chinviriyasit
, The effect of time delay on the dynamics of an SEIR model with nonlinear incidence, Chaos Soliton Fract., 75 (2015)
, 153-172.
doi: 10.1016/j.chaos.2015.02.017.
|
|
H. Wan and J. Cui, Rich dynamics of an epidemic model with saturation recovery,
J. Appl. Math. , 2013 (2013), Article ID 314958, 9pp.
|
|
W. D. Wang
, Backward bifurcation of an epidemic model with treatment, Math. Biosci, 201 (2006)
, 58-71.
doi: 10.1016/j.mbs.2005.12.022.
|
|
Q. Yang
, D. Jiang
, N. Shi
and C. Ji
, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012)
, 248-271.
doi: 10.1016/j.jmaa.2011.11.072.
|
|
N. Yi
, Q. Zhang
, K. Mao
, D. Yang
and Q. Li
, Analysis and control of an SEIR epidemic system with nonlinear transmission rate, Math. Comput. Model., 50 (2009)
, 1498-1513.
doi: 10.1016/j.mcm.2009.07.014.
|
|
X. Zhang
and X. Liu
, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008)
, 433-443.
doi: 10.1016/j.jmaa.2008.07.042.
|
|
J. Zhang, J. Jia and X. Song, Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function, Sci. World J. , (2014), Article ID 910421, http://dx.doi.org/10.1155/2014/910421
doi: 10.1016/j.aml.2013.11.002.
|
|
X. Zhou
and J. Cui
, Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate, Commun. Nonlinear Sci., 16 (2011)
, 4438-4450.
doi: 10.1016/j.cnsns.2011.03.026.
|