By applying the method of sub-super solutions, we obtain the existence of weak solutions to fractional Laplacian
$\left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u),&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right.$
where
Let
$ \left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u)+\nu ,&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right. $
Some results in[
In addition, we generalize some results to systems of fractional Laplacian equations by constructing subsolutions and supersolutions.
Citation: |
N. Abatangelo
, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015)
, 5555-5607.
doi: 10.3934/dcds.2015.35.5555.![]() ![]() ![]() |
|
K. Akô
, On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. Math. Soc. Japan, 13 (1961)
, 45-62.
doi: 10.2969/jmsj/01310045.![]() ![]() ![]() |
|
C. Brandle
, E. Colorado
, A. Pablo
and U. Sanchez
, A concave convex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh Sect. A, 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
H. Chen
, P. Felmer
and A. Quass
, Large solutions to elliptic equations involving the fractional Laplacian, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 32 (2015)
, 1199-1228.
doi: 10.1016/j.anihpc.2014.08.001.![]() ![]() ![]() |
|
H. Chen
and L. Véron
, Semilinear fractional elliptic equations involving measures, J. Differential Equations, 257 (2014)
, 1457-1486.
doi: 10.1016/j.jde.2014.05.012.![]() ![]() ![]() |
|
H. Chen
and L. Véron
, Semilinear fractional elliptic equations with gradient nonlinearity involving measures, J. Funct. Anal., 266 (2014)
, 5467-5492.
doi: 10.1016/j.jfa.2013.11.009.![]() ![]() ![]() |
|
W. Chen
, L. Ambrosio
and Y. Li
, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015)
, 370-381.
doi: 10.1016/j.na.2014.11.003.![]() ![]() ![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015)
, 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
|
W. Chen
and J. Y. Zhu
, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016)
, 4758-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
|
P. Clément
and G. Sweer
, Getting a solution between sub-and suprsolutions without monotone iteration, Rend, Istit. Mat. Univ. Trieste, 19 (1987)
, 189-194.
![]() ![]() |
|
E. N. Dancer
and G. Sweer
, On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations, 2 (1989)
, 533-540.
![]() ![]() |
|
M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic
problems in the half space, Commun. Contemp. Math. , 18 (2016), 1550012, 25pp.
doi: 10.1142/S0219199715500121.![]() ![]() ![]() |
|
P. Felmer
and A. Quass
, Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., 78 (2012)
, 123-144.
![]() ![]() |
|
M. Montenegro
and A. C. Ponce
, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc., 136 (2008)
, 2429-2438.
doi: 10.1090/S0002-9939-08-09231-9.![]() ![]() ![]() |
|
X. Rosoton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for the fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007)
, 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |