\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Method of sub-super solutions for fractional elliptic equations

The first author is supported by National Natural Sciences Foundations of China 11301166 and Young Teachers Program of Hunan University
The second author is supported by Natural Science Foundation of Hunan Province, China 2016JJ2018

Abstract Full Text(HTML) Related Papers Cited by
  • By applying the method of sub-super solutions, we obtain the existence of weak solutions to fractional Laplacian

    $\left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u),&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right.$

    where $f:\Omega \text{ }\!\!\times\!\!\text{ }\mathbb{R}\to \mathbb{R}$ is a Caratheódory function.

    Let $ν$ be a Radon measure. Based on the existence result in (1), we derive the existence of weak solutions for the semilinear fractional elliptic equation with measure data

    $ \left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u)+\nu ,&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right. $

    Some results in[7] are extended.

    In addition, we generalize some results to systems of fractional Laplacian equations by constructing subsolutions and supersolutions.

    Mathematics Subject Classification: Primary: 35J60, 35J67; Secondary: 58J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   N. Abatangelo , Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015) , 5555-5607.  doi: 10.3934/dcds.2015.35.5555.
      K. Akô , On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. Math. Soc. Japan, 13 (1961) , 45-62.  doi: 10.2969/jmsj/01310045.
      C. Brandle , E. Colorado , A. Pablo  and  U. Sanchez , A concave convex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh Sect. A, 143 (2013) , 39-71.  doi: 10.1017/S0308210511000175.
      X. Cabré  and  Y. Sire , Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014) , 23-53.  doi: 10.1016/j.anihpc.2013.02.001.
      L. Caffarelli  and  L. Silvestre , An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007) , 1245-1260.  doi: 10.1080/03605300600987306.
      H. Chen , P. Felmer  and  A. Quass , Large solutions to elliptic equations involving the fractional Laplacian, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 32 (2015) , 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.
      H. Chen  and  L. Véron , Semilinear fractional elliptic equations involving measures, J. Differential Equations, 257 (2014) , 1457-1486.  doi: 10.1016/j.jde.2014.05.012.
      H. Chen  and  L. Véron , Semilinear fractional elliptic equations with gradient nonlinearity involving measures, J. Funct. Anal., 266 (2014) , 5467-5492.  doi: 10.1016/j.jfa.2013.11.009.
      W. Chen , L. Ambrosio  and  Y. Li , Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015) , 370-381.  doi: 10.1016/j.na.2014.11.003.
      W. Chen , Y. Fang  and  R. Yang , Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015) , 167-198.  doi: 10.1016/j.aim.2014.12.013.
      W. Chen  and  J. Y. Zhu , Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016) , 4758-4785.  doi: 10.1016/j.jde.2015.11.029.
      P. Clément  and  G. Sweer , Getting a solution between sub-and suprsolutions without monotone iteration, Rend, Istit. Mat. Univ. Trieste, 19 (1987) , 189-194. 
      E. N. Dancer  and  G. Sweer , On the existence of a maximal weak solution for a semilinear elliptic equation, Differential Integral Equations, 2 (1989) , 533-540. 
      M. M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, Commun. Contemp. Math. , 18 (2016), 1550012, 25pp. doi: 10.1142/S0219199715500121.
      P. Felmer  and  A. Quass , Boundary blow up solutions for fractional elliptic equations, Asymptot. Anal., 78 (2012) , 123-144. 
      M. Montenegro  and  A. C. Ponce , The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc., 136 (2008) , 2429-2438.  doi: 10.1090/S0002-9939-08-09231-9.
      X. Rosoton  and  J. Serra , The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014) , 275-302.  doi: 10.1016/j.matpur.2013.06.003.
      L. Silvestre , Regularity of the obstacle problem for the fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007) , 67-112.  doi: 10.1002/cpa.20153.
  • 加载中
SHARE

Article Metrics

HTML views(1134) PDF downloads(592) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return