The existence of multiple radial solutions to the elliptic equation modeling fermionic cloud of interacting particles is proved for the limiting Planck constant and intermediate value of mass parameters. It is achieved by considering the related nonautonomous dynamical system for which the passage to the limit can be established due to the continuity of the solutions with respect to the parameter going to zero.
Citation: |
P. Biler
, D. Hilhorst
and T. Nadzieja
, Existence and nonexistence of solutions for a model of gravitational interaction of particles, Ⅱ, Colloq. Math., 67 (1994)
, 297-308.
doi: 10.4064/cm-67-2-297-308.![]() ![]() ![]() |
|
P. Biler
and R. Stańczy
, Parabolic-elliptic systems with general density-pressure relations, RIMS Kôkyûroku, 1405 (2004)
, 31-53.
![]() |
|
P. Biler
, T. Nadzieja
and R. Stańczy
, Nonisothermal systems of self-attracting Fermi-Dirac particles, Banach Center Publ., 66 (2004)
, 61-78.
doi: 10.4064/bc66-0-5.![]() ![]() ![]() |
|
D. Bors
, Superlinear elliptic systems with distributed and boundary controls, Control Cybernet., 34 (2005)
, 987-1004.
![]() ![]() |
|
D. Bors
and S. Walczak
, Nonlinear elliptic systems with variable boundary data, Nonlinear Anal., 52 (2003)
, 1347-1364.
doi: 10.1016/S0362-546X(02)00179-7.![]() ![]() ![]() |
|
D. Bors
and S. Walczak
, Stability of nonlinear elliptic systems with distributed parameters and variable boundary data, J. Comput. Appl. Math., 164/165 (2004)
, 117-130.
doi: 10.1016/j.cam.2003.09.014.![]() ![]() ![]() |
|
P.-H. Chavanis
, Phase transitions in self-gravitating systems, International Journal of Modern Physics B, 20 (2006)
, 3113-3198.
doi: 10.1142/S0217979206035400.![]() ![]() |
|
P.-H. Chavanis
, P. Laurençot
and M. Lemou
, Chapman-Enskog derivation of the generalized Smoluchowski equation, Phys. A, 341 (2004)
, 145-164.
doi: 10.1016/j.physa.2004.04.102.![]() ![]() ![]() |
|
P.-H. Chavanis
, M. Lemou
and F. Méhats
, Models of dark matter halos based on statistical mechanics: The classical King model, Phys. Rev. D, 91 (2015)
, 063531.
doi: 10.1103/PhysRevD.91.063531.![]() ![]() |
|
P.-H. Chavanis
, J. Sommeria
and R. Robert
, Statistical mechanics of two-dimensional vortices and collisionless stellar systems, Astrophys. J., 471 (1996)
, p385.
doi: 10.1086/177977.![]() ![]() |
|
J. Dolbeault
and R. Stańczy
, Bifurcation diagram and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi-Dirac statistics, Discrete Contin. Dyn. Syst., 35 (2015)
, 139-154.
doi: 10.3934/dcds.2015.35.139.![]() ![]() ![]() |
|
J. Dolbeault
and R. Stańczy
, Non-existence and uniqueness results for supercritical semilinear elliptic equations, Ann. Henri Poincaré, 10 (2010)
, 1311-1333.
doi: 10.1007/s00023-009-0016-9.![]() ![]() ![]() |
|
S. Eliezer, A. K. Ghatak and H. Hora,
An Introduction to Equations of State: Theory and Applications, Cambridge University Press, Cambridge, 1986.
![]() |
|
E. Feireisl
, Stability of flows of real monoatomic gases, Comm. Partial Differential Equations, 31 (2006)
, 325-348.
doi: 10.1080/03605300500358186.![]() ![]() ![]() |
|
E. Feireisl
and P. Laurençot
, Non-isothermal Smoluchowski-Poisson equations as a singular limit of the Navier-Stokes-Fourier-Poisson system, J. Math. Pures Appl., 88 (2007)
, 325-349.
doi: 10.1016/j.matpur.2007.07.002.![]() ![]() ![]() |
|
E. Feireisl, Mathematics of Complete Fluid Systems available online: http://www.math.cas.cz/fichier/course/filepdf/course_pdf_20121011171111_35.pdf
![]() |
|
E. Feireisl and A. Novotný,
Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser-Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0.![]() ![]() ![]() |
|
B. Gidas
, W. M. Ni
and L. Nirenberg
, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979)
, 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
|
F. Golse
and L. Saint-Raymond
, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004)
, 81-161.
doi: 10.1007/s00222-003-0316-5.![]() ![]() ![]() |
|
M. Grendar
and R. K. Niven
, Generalized classical, quantum and intermediate statistics and the Pólya urn model, Phys. Lett. A, 373 (2009)
, 621-626.
doi: 10.1016/j.physleta.2008.12.025.![]() ![]() ![]() |
|
D. D. Joseph
and T. S. Lundgren
, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73)
, 241-269.
doi: 10.1007/BF00250508.![]() ![]() ![]() |
|
A. Krzywicki
and T. Nadzieja
, Some results concerning the Poisson-Boltzmann equation, Appl. Math., 21 (1991)
, 265-272.
![]() ![]() |
|
I. Müller and T. Ruggieri,
Extended Thermodynamics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4684-0447-0.![]() ![]() ![]() |
|
R. Robert
, On the gravitational collapse of stellar systems, Classical Quantum Gravity, 15 (1998)
, 3827-3840.
doi: 10.1088/0264-9381/15/12/011.![]() ![]() ![]() |
|
R. Stańczy
, Steady states for a system describing self-gravitating Fermi-Dirac particles, Differential Integral Equations, 18 (2005)
, 567-582.
![]() ![]() |
|
R. Stańczy
, The existence of equlibria of many-particle systems, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009)
, 623-631.
doi: 10.1017/S0308210508000413.![]() ![]() ![]() |
|
R. Stańczy
, On an evolution system describing self-gravitating particles in microcanonical setting, Monatsh. Math., 162 (2011)
, 197-224.
doi: 10.1007/s00605-010-0218-8.![]() ![]() ![]() |
|
R. Stańczy
, On stationary and radially symmetric solutions to some drift-diffusion equations with nonlocal term, Appl. Anal., 95 (2016)
, 97-104.
doi: 10.1080/00036811.2014.998408.![]() ![]() ![]() |
Left: the heteroclinic orbit joining the points