The present paper describes the general structure of free boundary problems for systems of PDEs modeling biological processes. It then proceeds to review two recent examples of the evolution of a plaque in the artery, and of a granuloma in the lung. Simplified versions of these models are formulated, and rigorous mathematical results and open questions are stated.
Citation: |
C. S. Chou and A. Friedman,
Mathematical Introduction to Mathematical Biology, Springer, 2016.
doi: 10.1007/978-3-319-29638-8.![]() ![]() ![]() |
|
A. Friedman, Free boundary problems in biology Proceeding Royal Society, 373 (2015). 20140368 (16 pages).
doi: 10.1098/rsta.2014.0368.![]() ![]() ![]() |
|
A. Friedman
, Free boundary problems for systems of Stokes equations, Discrete and Continuous Dynamical Systems, 21 (2016)
, 1455-1468.
doi: 10.3934/dcdsb.2016006.![]() ![]() ![]() |
|
A. Friedman
and W. Hao
, A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors, Bull. Math. Biololgy, 77 (2015)
, 758-781.
doi: 10.1007/s11538-014-0010-3.![]() ![]() ![]() |
|
A. Friedman
, W. Hao
and B. Hu
, A free boundary problem for steady small plaques in the artery and their stability, J. Diff. Eqs., 259 (2015)
, 1227-1255.
doi: 10.1016/j.jde.2015.02.002.![]() ![]() ![]() |
|
A. Friedman
and W. Hao
, Mathematical modeling of liver fibrosis, Math. Biosc. and Bioengineering, 14 (2017)
, 143-164.
doi: 10.3934/mbe.2017010.![]() ![]() ![]() |
|
A. Friedman
, B. Hu
and C. Xue
, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010)
, 2013-2040, arXiv:0910.0039.
doi: 10.1137/090772630.![]() ![]() ![]() |
|
A. Friedman
, B. Hu
and C. Xue
, A three dimensional model of wound healing: Analysis and computation, Discrete and Continuous Dynamical Systems, Ser. B, 17 (2012)
, 2691-2712.
doi: 10.3934/dcdsb.2012.17.2691.![]() ![]() ![]() |
|
A. Friedman and C. Y. Kao,
Mathematical Modeling of Biological Processes, Springer, 2014.
doi: 10.1007/978-3-319-08314-8.![]() ![]() ![]() |
|
A. Friedman
and K. Y. Lam
, On the stability of steady states in a granuloma model, J. Diff. Eqs., 256 (2014)
, 3743-3769.
doi: 10.1016/j.jde.2014.02.019.![]() ![]() ![]() |
|
A. Friedman
and K. Y. Lam
, Analysis of a free boundary tumor model with angiogenesis, J. Diff. Eqs., 259 (2015)
, 7636-7661.
doi: 10.1016/j.jde.2015.08.032.![]() ![]() ![]() |
|
A. Friedman
, R. Leander
and C. Y. Kao
, Dynamics of radially symmetric granulomas, J. Math. Anal. Appl, 412 (2014)
, 776-791.
doi: 10.1016/j.jmaa.2013.11.017.![]() ![]() ![]() |
|
W. Hao and A. Friedman, The LDL-HDL profile determine the risk of atherosclerosis: A mathematical model PLoS One, 9 (2014), e90497 (15 pages).
doi: 10.1371/journal.pone.0090497.![]() ![]() |
|
W. Hao
, E. Crouser
and A. Friedman
, A mathematical model of sarcoidosis, PNAS, 111 (2014)
, 16065-16070.
doi: 10.1073/pnas.1417789111.![]() ![]() ![]() |
|
W. Hao, L. Schlesinger and A. Friedman, Modeling granulomas in response to infection in the lung PLoS ONE, 11 (2016), e0148738.
doi: 10.1371/journal.pone.0148738.![]() ![]() |
|
C. Xue
, A. Friedman
and C. Sen
, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009)
, 16782-16787.
![]() |
A wound
The plaque occupies the shaded area
Interplay among cholesterol, macrophages and foam cells