We study the nonlinear boundary value problem consisting of a system of second order differential equations and boundary conditions involving a Riemann-Stieltjes integrals. Our proofs are based on the generalized Miranda Theorem.
Citation: |
C. Bai
and J. Fang
, Existence of positive solutions for three-point boundary value problems at resonance, J. Math. Anal. Appl., 291 (2004)
, 538-549.
doi: 10.1016/j.jmaa.2003.11.014.![]() ![]() ![]() |
|
H. Ben-El-Mechaiekh
and W. Kryszewski
, Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997)
, 4159-4179.
doi: 10.1090/S0002-9947-97-01836-9.![]() ![]() ![]() |
|
J. T. Ding
and B. Z. Guo
, Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions, Comput. Math. Appl., 60 (2010)
, 670-679.
doi: 10.1016/j.camwa.2010.05.015.![]() ![]() ![]() |
|
W. Feng
, On an M-point boundary value problem, Nonlinear Anal., 30 (1997)
, 5369-5374.
doi: 10.1016/S0362-546X(97)00360-X.![]() ![]() ![]() |
|
D. Franco
, G. Infante
and M. Zima
, Second order nonlocal boundary value problems at resonance, Math. Nachr., 284 (2011)
, 875-884.
doi: 10.1002/mana.200810841.![]() ![]() ![]() |
|
L. Górniewicz,
Topological Fixed Point Theory of Multivalued Mappings Mathematics and its Applications, 495. Kluwer Academic Publishers, Dordrecht, 1999.
![]() ![]() |
|
A. Granas and M. Frigon,
Topological Methods in Differential Equations and Inclusions Kluwer Academic Publishers, 1995.
doi: 10.1007/978-94-011-0339-8.![]() ![]() ![]() |
|
C. P. Gupta
, A generalized multi-point boundary value problem for second order ordinary differential equations, Appl.Math. Comput., 89 (1998)
, 133-146.
doi: 10.1016/S0096-3003(97)81653-0.![]() ![]() ![]() |
|
X. Han
, Positive solutions for a three-point boundary value problem at resonance, J. Math. Anal. Appl., 336 (2007)
, 556-568.
doi: 10.1016/j.jmaa.2007.02.069.![]() ![]() ![]() |
|
G. Infante
and J. R. L. Webb
, Positive solutions of some nonlocal boundary value problems, Abstr. Appl. Anal., 18 (2003)
, 1047-1060.
doi: 10.1155/S1085337503301034.![]() ![]() ![]() |
|
L. C. Piccinnini, G. Stampacchia and G. Vidossich,
Ordinary Differential Equations in $\mathbb{R}^n$ Translated from the Italian by A. LoBello. Applied Mathematical Sciences, 39. Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5188-0.![]() ![]() ![]() |
|
P. Souplet
and F. B. Weissler
, Self-similar subsolutions and blowup for nonlinear parabolic equations, J. Math. Anal. Appl., 212 (1997)
, 60-74.
doi: 10.1006/jmaa.1997.5452.![]() ![]() ![]() |
|
E. H. Spanier,
Algebraic Topology Corrected reprint of the 1966 original. Springer-Verlag, New York, [1995?].
![]() ![]() |
|
K. Szymańska-Dębowska
, On a generalization of the Miranda Theorem and its application to boundary value problems, J. Differential Equations, 258 (2015)
, 2686-2700.
doi: 10.1016/j.jde.2014.12.022.![]() ![]() ![]() |
|
J. R. L. Webb
, Optimal constants in a nonlocal boundary value problem, Nonlinear Anal., 63 (2005)
, 672-685.
doi: 10.1016/j.na.2005.02.055.![]() ![]() ![]() |
|
J. R. L. Webb
and G. Infante
, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006)
, 673-693.
doi: 10.1112/S0024610706023179.![]() ![]() ![]() |
|
J. R. L. Webb
and G. Infante
, Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008)
, 45-67.
doi: 10.1007/s00030-007-4067-7.![]() ![]() ![]() |
|
J. R. L. Webb
, Existence of positive solutions for a thermostat model, Nonlinear Anal. RWA, 13 (2012)
, 923-938.
doi: 10.1016/j.nonrwa.2011.08.027.![]() ![]() ![]() |
|
J. R. L. Webb
and M. Zima
, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal., 71 (2009)
, 1369-1378.
doi: 10.1016/j.na.2008.12.010.![]() ![]() ![]() |