
-
Previous Article
Treatment of glioma with virotherapy and TNF-α inhibitors: Analysis as a dynamical system
- DCDS-B Home
- This Issue
-
Next Article
Numerical treatment of contact problems with thermal effect
The role of optimism and pessimism in the dynamics of emotional states
1. | College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland |
2. | Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland |
In this paper we make an attempt to study the influence of optimism and pessimism into our social life. We base on the model considered earlier by Rinaldi and Gragnani (1998) and Rinaldi et al. (2010) in the context of romantic relationships. Liebovitch et al. (2008) used the same model to describe competition between communicating people or groups of people. Considered system of non-linear differential equations assumes that the emotional state of an actor at any time is affected by the state of each actor alone, rate of return to that state, second actor's emotional state and mutual sympathy. Using this model we describe the change of emotions of both actors as a result of a single meeting. We try to explain who wants to meet whom and why. Interpreting the results, we focus on the analysis of the impact of a person's attitude to life (optimism or pessimism) on establishing emotional relations. It occurs that our conclusions are not always obvious from the psychological point of view. Moreover, using this model, we are able to explain such strange behavior as so-called Stockholm syndrom.
References:
[1] |
N. Bielczyk, M. Bodnar and U. Foryś,
Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 3923-3937.
doi: 10.1016/j.amc.2012.10.028. |
[2] |
N. Bielczyk, U. Foryś and T. Płatkowski,
Dynamical models of dyadic interactions with delay, J. Math. Soc., 37 (2013), 223-249.
doi: 10.1080/0022250X.2011.597279. |
[3] |
D. H. Felmlee and D. F. Greenberg,
A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155-180.
doi: 10.1080/0022250X.1999.9990218. |
[4] |
J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2002.
![]() ![]() |
[5] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-291.
doi: 10.21236/ADA045771. |
[6] |
L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. Biu-Wrzosinska and P. Coleman,
Dynamics of two-actor cooperation-competition conflict models, Physica A, 387 (2008), 6360-6378.
|
[7] |
J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, Springer-Verlag, New York, 2002.
![]() ![]() |
[8] |
S. Rinaldi,
Love dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181-192.
doi: 10.1016/S0096-3003(97)10081-9. |
[9] |
S. Rinaldi, F. Della Rosa and F. Dercole,
Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 3473-3485.
doi: 10.1142/S0218127410027829. |
[10] |
S. Rinaldi and A. Gragnani,
Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283-301.
|
[11] |
S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of beauty and the beast International Journal of Bifurcation and Chaos 23 (2013), 1330038, 8pp.
doi: 10.1142/S0218127413300383. |
[12] |
S. Rinaldi, P. Landi and F. Della Rossa,
Temporary bluffing can be rewarding in social systems: The case of romantic relationships, The Journal of Mathematical Sociology, 39 (2015), 203-220.
doi: 10.1080/0022250X.2015.1022280. |
[13] |
S. Rinaldi, F. D. Rossa and P. Landi,
Landi, A mathematical model of pride and prejudice?, Nonlinear dynamics, psychology, and life sciences, 18 (2014), 199-211.
|
[14] |
S. Rinaldi, F. Rossa Della, F. Dercole, A. Gragnani and P. Landi,
Modeling Love Dynamics vol. 89 of World Scientific Series on Nonlinear Science Series A, World Scientific Publishing Co. Pte. Ltd., 2016. |
[15] |
S. Strogatz,
Love affairs and differential equations, Math. Magazine, 65 (1988), p35.
|
[16] |
S. Strogatz, Nonlinear Dynamics and Chaos, Westwiev Press, 1994.
![]() |
show all references
References:
[1] |
N. Bielczyk, M. Bodnar and U. Foryś,
Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation, 219 (2012), 3923-3937.
doi: 10.1016/j.amc.2012.10.028. |
[2] |
N. Bielczyk, U. Foryś and T. Płatkowski,
Dynamical models of dyadic interactions with delay, J. Math. Soc., 37 (2013), 223-249.
doi: 10.1080/0022250X.2011.597279. |
[3] |
D. H. Felmlee and D. F. Greenberg,
A dynamic systems model of dyadic interaction, Journal of Mathematical Sociology, 23 (1999), 155-180.
doi: 10.1080/0022250X.1999.9990218. |
[4] |
J. M. Gottman, J. D. Murray, C. C. Swanson, R. Tyson and K. R. Swanson, The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2002.
![]() ![]() |
[5] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-291.
doi: 10.21236/ADA045771. |
[6] |
L. Liebovitch, V. Naudot, R. Vallacher, A. Nowak, L. Biu-Wrzosinska and P. Coleman,
Dynamics of two-actor cooperation-competition conflict models, Physica A, 387 (2008), 6360-6378.
|
[7] |
J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, Springer-Verlag, New York, 2002.
![]() ![]() |
[8] |
S. Rinaldi,
Love dynamics: The case of linear couples, Applied Mathematics and Computation, 95 (1998), 181-192.
doi: 10.1016/S0096-3003(97)10081-9. |
[9] |
S. Rinaldi, F. Della Rosa and F. Dercole,
Love and appeal in standard couples, International Journal of Bifurcation and Chaos, 20 (2010), 3473-3485.
doi: 10.1142/S0218127410027829. |
[10] |
S. Rinaldi and A. Gragnani,
Love dynamics between secure individuals: A modeling approach, Nonlinear Dynamics, Psychology, and Life Sciences, 2 (1998), 283-301.
|
[11] |
S. Rinaldi, P. Landi and F. Della Rosa, Small discoveries can have great consequences in love affairs: The case of beauty and the beast International Journal of Bifurcation and Chaos 23 (2013), 1330038, 8pp.
doi: 10.1142/S0218127413300383. |
[12] |
S. Rinaldi, P. Landi and F. Della Rossa,
Temporary bluffing can be rewarding in social systems: The case of romantic relationships, The Journal of Mathematical Sociology, 39 (2015), 203-220.
doi: 10.1080/0022250X.2015.1022280. |
[13] |
S. Rinaldi, F. D. Rossa and P. Landi,
Landi, A mathematical model of pride and prejudice?, Nonlinear dynamics, psychology, and life sciences, 18 (2014), 199-211.
|
[14] |
S. Rinaldi, F. Rossa Della, F. Dercole, A. Gragnani and P. Landi,
Modeling Love Dynamics vol. 89 of World Scientific Series on Nonlinear Science Series A, World Scientific Publishing Co. Pte. Ltd., 2016. |
[15] |
S. Strogatz,
Love affairs and differential equations, Math. Magazine, 65 (1988), p35.
|
[16] |
S. Strogatz, Nonlinear Dynamics and Chaos, Westwiev Press, 1994.
![]() |













[1] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[2] |
La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981 |
[3] |
Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070 |
[4] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[5] |
Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643 |
[6] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
[7] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[8] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[9] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[10] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[11] |
Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231 |
[12] |
Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049 |
[13] |
Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056 |
[14] |
Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849 |
[15] |
Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117 |
[16] |
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 |
[17] |
Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467 |
[18] |
Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147 |
[19] |
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165 |
[20] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]