We consider a model of phenotypic evolution in populations with assortative mating of individuals. The model is given by a nonlinear operator acting on the space of probability measures and describes the relation between parental and offspring trait distributions. We study long-time behavior of trait distribution and show that it converges to a combination of Dirac measures. This result means that assortative mating can lead to a polymorphic population and sympatric speciation.
Citation: |
Figure 2. Evolution of trait distribution with $K(x, y, dz)=\delta_{\frac{x+y}{2}}(dz)$ and different preference functions $\psi(x, y)=\varphi_i(|x-y|)$ with $\varphi_1(r)=1$, $\varphi_2(r)=(r-1)^2(r+1)^2$, and $\varphi_3(r)=(1-r)^3$, respectively, for $r < 1$ and $0$ otherwise. In all three cases the initial population's trait is uniformly distributed on the interval $[1.5, 1.5]$
N. H Barton
, A. M. Etheridge
and A. Véber
, The infinitesimal model: Definition, derivation, and implications, Theor. Popul Biol., (2007)
.
doi: 10.1016/j.tpb.2017.06.001.![]() ![]() |
|
P. Billingsley, Probability and Measure, John Wiley and Sons, New York, 1986.
![]() ![]() |
|
M. G. Bulmer, The Mathematical Theory of Quantitative Genetics, Clarendon Press, Oxford, 1980.
![]() ![]() |
|
J. A. Cañizo
, J. A. Carrillo
and S. Cuadrado
, Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013)
, 141-156.
doi: 10.1007/s10440-012-9758-3.![]() ![]() ![]() |
|
L. Desvillettes
, P. E. Jabin
, S. Mischler
and G. Raoul
, On selection dynamics for continuous populations, Commun. Math. Sci., 6 (2008)
, 729-747.
doi: 10.4310/CMS.2008.v6.n3.a10.![]() ![]() ![]() |
|
O. Diekmann
, P. E. Jabin
, S. Mischler
and B. Perthame
, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul Biol., 67 (2005)
, 257-271.
doi: 10.1016/j.tpb.2004.12.003.![]() ![]() |
|
U. Dieckmann
and M. Doebeli
, On the origin of species by sympatric speciation, Nature, 400 (1999)
, 354-357.
doi: 10.1038/22521.![]() ![]() |
|
M. Doebeli
, H. J. Blok
, O. Leimar
and U. Dieckmann
, Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, 274 (2007)
, 347-357.
doi: 10.1098/rspb.2006.3725.![]() ![]() |
|
R. A. Fisher
, The correlations between relatives on the supposition of Mendelian inheritance, Trans. R. Soc. Edinburgh, 52 (1919)
, 399-433.
doi: 10.1017/S0080456800012163.![]() ![]() |
|
S. Gavrilets
and C. R. B. Boake
, On the evolution of premating isolation after a founder event, The American Naturalist, 152 (1998)
, 706-716.
doi: 10.1086/286201.![]() ![]() |
|
P. Hinow
, Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math., 70 (2009)
, 40-62.
doi: 10.1137/080732420.![]() ![]() ![]() |
|
P. Jabin
and G. Raoul
, On selection dynamics for competitive interactions, J. Math. Biol., 63 (2011)
, 493-517.
doi: 10.1007/s00285-010-0370-8.![]() ![]() ![]() |
|
F. A. Kondrashov
and A. S. Kondrashov
, Interactions among quantitative traits in the course of sympatric speciation, Nature, 400 (1999)
, 351-354.
doi: 10.1038/22514.![]() ![]() |
|
C. Matessi
, A. Gimelfarb
and S. Gavrilets
, Long-term buildup of reproductive isolation promoted by disruptive selection: How far does it go?, Selection, 2 (2001)
, 41-64.
doi: 10.1556/Select.2.2001.1-2.4.![]() ![]() |
|
J. Maynard Smith
, Sympatric speciation, Am. Nat., 100 (1966)
, 637-650.
doi: 10.1086/282457.![]() ![]() |
|
P. Michel
, A singular asymptotic behavior of a transport equation, C. R. Acad. Sci. Paris, Ser. I, 346 (2008)
, 155-159.
doi: 10.1016/j.crma.2007.12.010.![]() ![]() ![]() |
|
B. Perthame,
Transport Equations in Biology Frontiers in Mathematics, Birkhäuser, Basel, 2007.
![]() ![]() |
|
J. Polechová
and N. H. Barton
, Speciation through competition: A critical review, Evolution, 59 (2005)
, 1194-1210.
![]() |
|
O. Puebla
, E. Bermingham
and F. Guichard
, Pairing dynamics and the origin of species, Proc. Biol. Sci., 279 (2012)
, 1085-1092.
doi: 10.1098/rspb.2011.1549.![]() ![]() |
|
R. Rudnicki
and R. Wieczorek
, On a nonlinear age-structured model of semelparous species, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014)
, 2641-2656.
doi: 10.3934/dcdsb.2014.19.2641.![]() ![]() ![]() |
|
R. Rudnicki
and P. Zwoleński
, Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol., 70 (2015)
, 1295-1321.
doi: 10.1007/s00285-014-0798-3.![]() ![]() ![]() |
|
K. A. Schneider
and R. Bürger
, Does competitive divergence occur if assortative mating is costly?, Journal of Evolutionary Biology, 19 (2006)
, 570-588.
![]() |
|
K. A. Schneider
and S. Peischl
, Evolution of assortative mating in a population expressing dominance, PLoS ONE, 6 (2011)
, e16821.
doi: 10.1371/journal.pone.0016821.![]() ![]() |
|
P. Zwoleński
, Trait evolution in two-sex populations, Math. Mod. Nat. Phenom., 10 (2015)
, 163-181.
doi: 10.1051/mmnp/20150611.![]() ![]() ![]() |
Evolution of trait distribution with
A "bifurcation graph" of positions of the limit Dirac measures with respect to the size of the support of initial function
Evolution of trait distribution with
Evolution of trait distribution with
Evolution of trait distribution with
Evolution of trait distribution when all offspring is distributed with probability distribution