-
Previous Article
Stability of travelling waves in a Wolbachia invasion
- DCDS-B Home
- This Issue
-
Next Article
High order Gauss-Seidel schemes for charged particle dynamics
Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal
1. | College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China |
2. | School of Mathematics, Lanzhou City University, Lanzhou, Gansu 730070, China |
This paper is concerned with the traveling waves of a nonlocal dispersal Lotka-Volterra strong competition model with bistable nonlinearity. We first establish the asymptotic behavior of traveling waves at infinity. Then by applying the stronger comparison principle and the sliding method, we prove that the traveling waves with nonzero speed are strictly monotone. Moreover, the uniqueness of wave speeds is also obtained.
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves of nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[3] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[4] |
X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125–160. http://projecteuclid.org/euclid.ade/1366809230 |
[5] |
J. Coville and L. Dupaigne,
On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect.A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[6] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[7] |
J. Fang and X. Q. Zhao,
Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.
doi: 10.1137/140953939. |
[8] |
P. Fife, Some nonclassical trends in parabolic-like evolutions, in Trends in Nonlinear Analysis,
Springer, Berlin, (2003), 153–191. |
[9] |
J.-S. Guo and X. Liang,
The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[10] |
J.-S. Guo and C.-H. Wu,
Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.
doi: 10.1016/j.jde.2010.12.004. |
[11] |
J.-S. Guo and C.-H. Wu,
Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.
doi: 10.1016/j.jde.2012.01.009. |
[12] |
J.-S. Guo and C.-H. Wu,
Recent developments on wave propagation in 2-species competition systems, Discrete Continuous Dynam. Systems -B, 17 (2012), 2713-2724.
doi: 10.3934/dcdsb.2012.17.2713. |
[13] |
G. Hetzer, T. Nguyen and W. Shen,
Coexistence and extinction in the Volterrra-Lotka competition model with nonlocal dispersal, Commu. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699. |
[14] |
Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra
competitive models, in "Numerical and Applied Mathematic, Part Ⅱ" (Paris, 1988), IMACS
Ann. Comput. Appl. Math., 1. 2, Baltzer, Basel, (1989), 687–692. |
[15] |
Y. Hosono,
The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448.
doi: 10.1006/bulm.1997.0008. |
[16] |
X. Hou, B. Wang and Z. C. Zhang,
The mutual inclusion in a nonlocal competitive Lotka Volterra system, Japan J. Indust. Appl. Math., 31 (2014), 87-110.
doi: 10.1007/s13160-013-0126-0. |
[17] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biology, 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[18] |
Y. Kan-on,
Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.
doi: 10.1016/0362-546X(95)00142-I. |
[19] |
X.-S. Li and G. Lin,
Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.
doi: 10.1016/j.amc.2008.07.016. |
[20] |
W.-T. Li, L. Zhang and G.-B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Continuous Dynam. Systems, 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[21] |
G. Lin and W. T. Li,
Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 224 (2008), 487-513.
doi: 10.1016/j.jde.2007.10.019. |
[22] |
J. Murray,
Mathematical Biology, 3 $^{nd}$, Springer, Berlin-Heidelberg, New York, 2003. |
[23] |
S. Pan, W. T. Li and G. Lin,
Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[24] |
S. Pan and G. Lin,
Invasion traveling wave solutions of a competitive system with dispersal, Bound. Value Probl., 2012 (2012), 1-11.
doi: 10.1186/1687-2770-2012-120. |
[25] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020. |
[26] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826.
doi: 10.1016/j.na.2010.09.032. |
[27] |
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Travelling Wave Solutions of Parabolic Sysytems Translation of Mathematical Monographs, Vol. 140, Amer. Math. Soc., Priovidence, 1994. |
[28] |
C.-C. Wu,
Existence of traveling wavefront for discrete bistable competition model, Discrete Continuous Dynam. Systems -B, 16 (2011), 973-984.
doi: 10.3934/dcdsb.2011.16.973. |
[29] |
Z.-X. Yu and R. Yuan,
Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.
doi: 10.1017/S1446181109000406. |
[30] |
G.-B. Zhang, W.-T. Li and G. Lin,
Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007. |
[31] |
G.-B. Zhang,
Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047.
doi: 10.1016/j.na.2011.04.069. |
[32] |
G.-B. Zhang, W.-T. Li and Z.-C. Wang,
Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.
doi: 10.1016/j.jde.2012.01.014. |
[33] |
L. Zhang and B. Li,
Traveling wave solutions in an integro-differential competition model, Discrete Continuous Dynam. Systems -B, 17 (2012), 417-428.
doi: 10.3934/dcdsb.2012.17.417. |
show all references
References:
[1] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[2] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves of nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[3] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[4] |
X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125–160. http://projecteuclid.org/euclid.ade/1366809230 |
[5] |
J. Coville and L. Dupaigne,
On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect.A, 137 (2007), 727-755.
doi: 10.1017/S0308210504000721. |
[6] |
J. Coville, J. Dávila and S. Martínez,
Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.
doi: 10.1016/j.jde.2007.11.002. |
[7] |
J. Fang and X. Q. Zhao,
Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.
doi: 10.1137/140953939. |
[8] |
P. Fife, Some nonclassical trends in parabolic-like evolutions, in Trends in Nonlinear Analysis,
Springer, Berlin, (2003), 153–191. |
[9] |
J.-S. Guo and X. Liang,
The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.
doi: 10.1007/s10884-011-9214-5. |
[10] |
J.-S. Guo and C.-H. Wu,
Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.
doi: 10.1016/j.jde.2010.12.004. |
[11] |
J.-S. Guo and C.-H. Wu,
Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.
doi: 10.1016/j.jde.2012.01.009. |
[12] |
J.-S. Guo and C.-H. Wu,
Recent developments on wave propagation in 2-species competition systems, Discrete Continuous Dynam. Systems -B, 17 (2012), 2713-2724.
doi: 10.3934/dcdsb.2012.17.2713. |
[13] |
G. Hetzer, T. Nguyen and W. Shen,
Coexistence and extinction in the Volterrra-Lotka competition model with nonlocal dispersal, Commu. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699. |
[14] |
Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra
competitive models, in "Numerical and Applied Mathematic, Part Ⅱ" (Paris, 1988), IMACS
Ann. Comput. Appl. Math., 1. 2, Baltzer, Basel, (1989), 687–692. |
[15] |
Y. Hosono,
The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448.
doi: 10.1006/bulm.1997.0008. |
[16] |
X. Hou, B. Wang and Z. C. Zhang,
The mutual inclusion in a nonlocal competitive Lotka Volterra system, Japan J. Indust. Appl. Math., 31 (2014), 87-110.
doi: 10.1007/s13160-013-0126-0. |
[17] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biology, 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[18] |
Y. Kan-on,
Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.
doi: 10.1016/0362-546X(95)00142-I. |
[19] |
X.-S. Li and G. Lin,
Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.
doi: 10.1016/j.amc.2008.07.016. |
[20] |
W.-T. Li, L. Zhang and G.-B. Zhang,
Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Continuous Dynam. Systems, 35 (2015), 1531-1560.
doi: 10.3934/dcds.2015.35.1531. |
[21] |
G. Lin and W. T. Li,
Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 224 (2008), 487-513.
doi: 10.1016/j.jde.2007.10.019. |
[22] |
J. Murray,
Mathematical Biology, 3 $^{nd}$, Springer, Berlin-Heidelberg, New York, 2003. |
[23] |
S. Pan, W. T. Li and G. Lin,
Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y. |
[24] |
S. Pan and G. Lin,
Invasion traveling wave solutions of a competitive system with dispersal, Bound. Value Probl., 2012 (2012), 1-11.
doi: 10.1186/1687-2770-2012-120. |
[25] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020. |
[26] |
Y.-J. Sun, W.-T. Li and Z.-C. Wang,
Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826.
doi: 10.1016/j.na.2010.09.032. |
[27] |
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Travelling Wave Solutions of Parabolic Sysytems Translation of Mathematical Monographs, Vol. 140, Amer. Math. Soc., Priovidence, 1994. |
[28] |
C.-C. Wu,
Existence of traveling wavefront for discrete bistable competition model, Discrete Continuous Dynam. Systems -B, 16 (2011), 973-984.
doi: 10.3934/dcdsb.2011.16.973. |
[29] |
Z.-X. Yu and R. Yuan,
Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.
doi: 10.1017/S1446181109000406. |
[30] |
G.-B. Zhang, W.-T. Li and G. Lin,
Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007. |
[31] |
G.-B. Zhang,
Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047.
doi: 10.1016/j.na.2011.04.069. |
[32] |
G.-B. Zhang, W.-T. Li and Z.-C. Wang,
Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.
doi: 10.1016/j.jde.2012.01.014. |
[33] |
L. Zhang and B. Li,
Traveling wave solutions in an integro-differential competition model, Discrete Continuous Dynam. Systems -B, 17 (2012), 417-428.
doi: 10.3934/dcdsb.2012.17.417. |
[1] |
Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021064 |
[2] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[3] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[4] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[5] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[6] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[7] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[10] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[11] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[12] |
Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021006 |
[13] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[14] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[15] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[16] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
[17] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[18] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[19] |
Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021077 |
[20] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]