March  2018, 23(2): 587-608. doi: 10.3934/dcdsb.2018035

Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

School of Mathematics, Lanzhou City University, Lanzhou, Gansu 730070, China

E-mail address:zhanggb2011@nwnu.edu.cn(G.-B. Zhang)

Received  April 2016 Revised  July 2017 Published  December 2017

This paper is concerned with the traveling waves of a nonlocal dispersal Lotka-Volterra strong competition model with bistable nonlinearity. We first establish the asymptotic behavior of traveling waves at infinity. Then by applying the stronger comparison principle and the sliding method, we prove that the traveling waves with nonzero speed are strictly monotone. Moreover, the uniqueness of wave speeds is also obtained.

Citation: Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035
References:
[1]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves of nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125–160. http://projecteuclid.org/euclid.ade/1366809230  Google Scholar

[5]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect.A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[6]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Fang and X. Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[8]

P. Fife, Some nonclassical trends in parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153–191.  Google Scholar

[9]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[10]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.  doi: 10.1016/j.jde.2010.12.004.  Google Scholar

[11]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[12]

J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Continuous Dynam. Systems -B, 17 (2012), 2713-2724.  doi: 10.3934/dcdsb.2012.17.2713.  Google Scholar

[13]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Volterrra-Lotka competition model with nonlocal dispersal, Commu. Pure Appl. Anal., 11 (2012), 1699-1722.  doi: 10.3934/cpaa.2012.11.1699.  Google Scholar

[14]

Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competitive models, in "Numerical and Applied Mathematic, Part Ⅱ" (Paris, 1988), IMACS Ann. Comput. Appl. Math., 1. 2, Baltzer, Basel, (1989), 687–692.  Google Scholar

[15]

Y. Hosono, The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[16]

X. HouB. Wang and Z. C. Zhang, The mutual inclusion in a nonlocal competitive Lotka Volterra system, Japan J. Indust. Appl. Math., 31 (2014), 87-110.  doi: 10.1007/s13160-013-0126-0.  Google Scholar

[17]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biology, 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[18]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[19]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[20]

W.-T. LiL. Zhang and G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Continuous Dynam. Systems, 35 (2015), 1531-1560.  doi: 10.3934/dcds.2015.35.1531.  Google Scholar

[21]

G. Lin and W. T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 224 (2008), 487-513.  doi: 10.1016/j.jde.2007.10.019.  Google Scholar

[22]

J. Murray, Mathematical Biology, 3 $^{nd}$, Springer, Berlin-Heidelberg, New York, 2003.  Google Scholar

[23]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[24]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal, Bound. Value Probl., 2012 (2012), 1-11.  doi: 10.1186/1687-2770-2012-120.  Google Scholar

[25]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[26]

Y.-J. SunW.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[27]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Sysytems Translation of Mathematical Monographs, Vol. 140, Amer. Math. Soc., Priovidence, 1994.  Google Scholar

[28]

C.-C. Wu, Existence of traveling wavefront for discrete bistable competition model, Discrete Continuous Dynam. Systems -B, 16 (2011), 973-984.  doi: 10.3934/dcdsb.2011.16.973.  Google Scholar

[29]

Z.-X. Yu and R. Yuan, Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.  doi: 10.1017/S1446181109000406.  Google Scholar

[30]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[31]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047.  doi: 10.1016/j.na.2011.04.069.  Google Scholar

[32]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[33]

L. Zhang and B. Li, Traveling wave solutions in an integro-differential competition model, Discrete Continuous Dynam. Systems -B, 17 (2012), 417-428.  doi: 10.3934/dcdsb.2012.17.417.  Google Scholar

show all references

References:
[1]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves of nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125–160. http://projecteuclid.org/euclid.ade/1366809230  Google Scholar

[5]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect.A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[6]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[7]

J. Fang and X. Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704.  doi: 10.1137/140953939.  Google Scholar

[8]

P. Fife, Some nonclassical trends in parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153–191.  Google Scholar

[9]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[10]

J.-S. Guo and C.-H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533.  doi: 10.1016/j.jde.2010.12.004.  Google Scholar

[11]

J.-S. Guo and C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[12]

J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Continuous Dynam. Systems -B, 17 (2012), 2713-2724.  doi: 10.3934/dcdsb.2012.17.2713.  Google Scholar

[13]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Volterrra-Lotka competition model with nonlocal dispersal, Commu. Pure Appl. Anal., 11 (2012), 1699-1722.  doi: 10.3934/cpaa.2012.11.1699.  Google Scholar

[14]

Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competitive models, in "Numerical and Applied Mathematic, Part Ⅱ" (Paris, 1988), IMACS Ann. Comput. Appl. Math., 1. 2, Baltzer, Basel, (1989), 687–692.  Google Scholar

[15]

Y. Hosono, The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[16]

X. HouB. Wang and Z. C. Zhang, The mutual inclusion in a nonlocal competitive Lotka Volterra system, Japan J. Indust. Appl. Math., 31 (2014), 87-110.  doi: 10.1007/s13160-013-0126-0.  Google Scholar

[17]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biology, 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[18]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[19]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[20]

W.-T. LiL. Zhang and G.-B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Continuous Dynam. Systems, 35 (2015), 1531-1560.  doi: 10.3934/dcds.2015.35.1531.  Google Scholar

[21]

G. Lin and W. T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 224 (2008), 487-513.  doi: 10.1016/j.jde.2007.10.019.  Google Scholar

[22]

J. Murray, Mathematical Biology, 3 $^{nd}$, Springer, Berlin-Heidelberg, New York, 2003.  Google Scholar

[23]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[24]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal, Bound. Value Probl., 2012 (2012), 1-11.  doi: 10.1186/1687-2770-2012-120.  Google Scholar

[25]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[26]

Y.-J. SunW.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[27]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Parabolic Sysytems Translation of Mathematical Monographs, Vol. 140, Amer. Math. Soc., Priovidence, 1994.  Google Scholar

[28]

C.-C. Wu, Existence of traveling wavefront for discrete bistable competition model, Discrete Continuous Dynam. Systems -B, 16 (2011), 973-984.  doi: 10.3934/dcdsb.2011.16.973.  Google Scholar

[29]

Z.-X. Yu and R. Yuan, Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009), 49-66.  doi: 10.1017/S1446181109000406.  Google Scholar

[30]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[31]

G.-B. Zhang, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011), 5030-5047.  doi: 10.1016/j.na.2011.04.069.  Google Scholar

[32]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[33]

L. Zhang and B. Li, Traveling wave solutions in an integro-differential competition model, Discrete Continuous Dynam. Systems -B, 17 (2012), 417-428.  doi: 10.3934/dcdsb.2012.17.417.  Google Scholar

[1]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021064

[2]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[3]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[6]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[7]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021087

[10]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[11]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[12]

Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021006

[13]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[14]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[15]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[16]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[17]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[18]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[19]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[20]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (237)
  • HTML views (297)
  • Cited by (1)

Other articles
by authors

[Back to Top]