\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion

  • * Corresponding author: Junjie Wei

    * Corresponding author: Junjie Wei

The corresponding author is supported by National Natural Science Foundation of China (Nos.11371111 and 11771109)

Abstract Full Text(HTML) Figure(8) Related Papers Cited by
  • In this paper, the dynamics of a class of modified Leslie-Gower model with diffusion is considered. The stability of positive equilibrium and the existence of Turing-Hopf bifurcation are shown by analyzing the distribution of eigenvalues. The normal form on the centre manifold near the Turing-Hopf singularity is derived by using the method of Song et al. Finally, some numerical simulations are carried out to illustrate the analytical results. For spruce budworm model, the dynamics in the neighbourhood of the bifurcation point can be divided into six categories, each of which is exactly demonstrated by the numerical simulations. Then according to this dynamical classification, a stable spatially inhomogeneous periodic solution has been found, which can be used to explain the phenomenon of periodic outbreaks of spruce budworm.

    Mathematics Subject Classification: Primary: 35B32, 37G15; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Stability region and bifurcation diagram for system (5) at the unique positive equilibrium $E^*$ in the parameter plane, where $f(u) = \frac{Au^2}{B+u^2}$, $A = 1, B = 0.0025, l = 1$. (a):$d_1 = 0.05, d_2 = 0.33$. (b):$d_1 = 0.05, d_2 = 0.28.$

    Figure 2.  Bifurcation diagrams and dynamical classification near the Turing-Hopf point $P^*$

    Figure 3.  When $(\mu_1, \mu_2) = (-0.01, 0.02)$ lies in region ①, the positive constant equilibrium $E^*(0.1296, 0.0167)$ is asymptotically stable. The initial value is $u(x, 0) = 0.1296+0.005\cos x, v(x, 0) = 0.0167+0.01\cos x$

    Figure 4.  When $(\mu_1, \mu_2) = (0.022, 0.014)$ lies in region ②, the positive constant equilibrium $E^*(0.1296, 0.0208)$ is unstable and there are two stable spatially inhomogeneous steady states like $\cos x$. (a) and (b) The initial value is $u(x, 0) = 0.1296-0.02\cos x, v(x, 0) = 0.0208+0.01\cos x$; (c) and (d) the initial value is $u(x, 0) = 0.1296+0.02\cos x, v(x, 0) = 0.0208-0.01\cos x$

    Figure 5.  When $(\mu_1, \mu_2) = (0.02, 0.01)$ lies in region ③, the positive constant equilibrium $E^*(0.1296, 0.0206)$ is unstable and there is a heteroclinic orbit connecting the unstable spatially homogeneous periodic solution to stable spatially inhomogeneous steady state. The initial value is $u(x, 0) = 0.1576-0.002\cos x, v(x, 0) = 0.0234$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are middle-term behaviours for $u$ and $v$, respectively; (e) and (f) are long-term behaviours for $u$ and $v$, respectively

    Figure 6.  When $(\mu_1, \mu_2) = (0.4, 0.12)$ lies in region ④, the positive constant equilibrium $E^*(0.1296, 0.0698)$ is unstable and there are stable spatially inhomogeneous periodic solution. The initial value is $u(x, 0) = 0.1306-0.001\cos x, v(x, 0) = 0.0691+0.001\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively

    Figure 7.  When $(\mu_1, \mu_2) = (-0.01, -0.015)$ lies in region ⑤, the positive constant equilibrium $E^*(0.1296, 0.0167)$ is unstable and there are heteroclinic solution connecting the unstable spatially inhomogeneous steady state to stable spatially homogeneous periodic solution. The initial value is $u(x, 0) = 0.1526-0.065\cos x, v(x, 0) = 0.0189-0.0015\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively

    Figure 8.  When $(\mu_1, \mu_2) = (-0.02, -0.022)$ lies in region ⑥, the positive constant equilibrium $E^*(0.1296, 0.0154)$ is unstable and there is a stable spatially homogeneous periodic solution. The initial value is $u(x, 0) = 0.1296, v(x, 0) = 0.0154-0.001\cos x$

  •   M. Aziz , Study of a Leslie-Gower-type tritrophic population, Chaos Soliton Fract., 14 (2002) , 1275-1293.  doi: 10.1016/S0960-0779(02)00079-6.
      L. Chen  and  F. Chen , Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009) , 1330-1334.  doi: 10.1016/j.aml.2009.03.005.
      S. Chen , J. Shi  and  J. Wei , Global stability and Hopf bifurcation in a delayed difusive LeslieGower predator-prey system, Int. J. Bifurcat. Chaos, 22 (2012) , 1250061, 11pp-1334. 
      S. Chen , J. Shi  and  J. Wei , The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response, Commun. Pur. Appl. Anal., 12 (2013) , 481-501. 
      J. Collings , The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997) , 149-168.  doi: 10.1007/s002850050095.
      T. Faria , Normal forms and Hopf bifurcation for partial differential equations with delays, T. Am. Math. Soc., 352 (2000) , 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.
      P. Feng  and  Y. Kang , Dynamics of a modified Leslie-Gower model with double Allee efects, Nonlinear Dynam., 80 (2015) , 1051-1062.  doi: 10.1007/s11071-015-1927-2.
      J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
      G. Guo , B. Li , M. Wei  and  J. Huang , Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 391 (2012) , 265-277.  doi: 10.1016/j.jmaa.2012.02.012.
      G. Hu  and  W. Li , Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonl. Anal. Real World Appl., 11 (2010) , 819-826.  doi: 10.1016/j.nonrwa.2009.01.027.
      J. Jin , J. Shi , J. Wei  and  F. Yi , Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mt. J. Math., 43 (2013) , 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.
      Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York, 1998.
      P. Leslie , A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958) , 16-31.  doi: 10.1093/biomet/45.1-2.16.
      P. Leslie  and  J. Gower , The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960) , 219-234.  doi: 10.1093/biomet/47.3-4.219.
      X. Li , W. Jiang  and  J. Shi , Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA. J. Appl. Math., 78 (2013) , 287-306.  doi: 10.1093/imamat/hxr050.
      P. Liu , J. Shi , W. Wang  and  X. Feng , Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013) , 2001-2019.  doi: 10.1007/s10910-013-0196-x.
      M. Liu  and  K. Wang , Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal. Theor., 85 (2013) , 204-213.  doi: 10.1016/j.na.2013.02.018.
      Y. Ma , Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays, Nonl. Anal. Real World Appl., 13 (2012) , 370-375.  doi: 10.1016/j.nonrwa.2011.07.045.
      J. Murray, Mathematical Biology, 2nd edition, Springer-Verlag Berlin Heidelberg, New York, 1993.
      Y. Song , T. Zhang  and  Y. Peng , Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016) , 229-258.  doi: 10.1016/j.cnsns.2015.10.002.
      Y. Song  and  X. Zhou , Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonliner Dynam., 78 (2014) , 49-70.  doi: 10.1007/s11071-014-1421-2.
      X. Tang , Y. Song  and  T. Zhang , Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonliner Dynam., 86 (2016) , 73-89.  doi: 10.1007/s11071-016-2873-3.
      J. Wollkind , J. Collings  and  A. Logan , Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, B. Math. Biol., 50 (1988) , 379-409.  doi: 10.1007/BF02459707.
      R. Yang  and  Y. Song , Spatial resonance and Turing-Hopf bifurcation in the Gierer-Meinhardt model, Nonl. Anal. Real World Appl., 31 (2016) , 356-387.  doi: 10.1016/j.nonrwa.2016.02.006.
      F. Yi , J. Wei  and  J. Shi , Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal. Real World Appl., 9 (2008) , 1038-1051.  doi: 10.1016/j.nonrwa.2007.02.005.
      F. Yi , J. Wei  and  J. Shi , Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009) , 1944-1977.  doi: 10.1016/j.jde.2008.10.024.
      J. Zhou , Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent difusion, Nonlinear Anal. Theor., 82 (2013) , 47-65.  doi: 10.1016/j.na.2012.12.014.
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(553) PDF downloads(474) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return