In this paper, the dynamics of a class of modified Leslie-Gower model with diffusion is considered. The stability of positive equilibrium and the existence of Turing-Hopf bifurcation are shown by analyzing the distribution of eigenvalues. The normal form on the centre manifold near the Turing-Hopf singularity is derived by using the method of Song et al. Finally, some numerical simulations are carried out to illustrate the analytical results. For spruce budworm model, the dynamics in the neighbourhood of the bifurcation point can be divided into six categories, each of which is exactly demonstrated by the numerical simulations. Then according to this dynamical classification, a stable spatially inhomogeneous periodic solution has been found, which can be used to explain the phenomenon of periodic outbreaks of spruce budworm.
Citation: |
Figure 4. When $(\mu_1, \mu_2) = (0.022, 0.014)$ lies in region ②, the positive constant equilibrium $E^*(0.1296, 0.0208)$ is unstable and there are two stable spatially inhomogeneous steady states like $\cos x$. (a) and (b) The initial value is $u(x, 0) = 0.1296-0.02\cos x, v(x, 0) = 0.0208+0.01\cos x$; (c) and (d) the initial value is $u(x, 0) = 0.1296+0.02\cos x, v(x, 0) = 0.0208-0.01\cos x$
Figure 5. When $(\mu_1, \mu_2) = (0.02, 0.01)$ lies in region ③, the positive constant equilibrium $E^*(0.1296, 0.0206)$ is unstable and there is a heteroclinic orbit connecting the unstable spatially homogeneous periodic solution to stable spatially inhomogeneous steady state. The initial value is $u(x, 0) = 0.1576-0.002\cos x, v(x, 0) = 0.0234$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are middle-term behaviours for $u$ and $v$, respectively; (e) and (f) are long-term behaviours for $u$ and $v$, respectively
Figure 6. When $(\mu_1, \mu_2) = (0.4, 0.12)$ lies in region ④, the positive constant equilibrium $E^*(0.1296, 0.0698)$ is unstable and there are stable spatially inhomogeneous periodic solution. The initial value is $u(x, 0) = 0.1306-0.001\cos x, v(x, 0) = 0.0691+0.001\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively
Figure 7. When $(\mu_1, \mu_2) = (-0.01, -0.015)$ lies in region ⑤, the positive constant equilibrium $E^*(0.1296, 0.0167)$ is unstable and there are heteroclinic solution connecting the unstable spatially inhomogeneous steady state to stable spatially homogeneous periodic solution. The initial value is $u(x, 0) = 0.1526-0.065\cos x, v(x, 0) = 0.0189-0.0015\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively
M. Aziz
, Study of a Leslie-Gower-type tritrophic population, Chaos Soliton Fract., 14 (2002)
, 1275-1293.
doi: 10.1016/S0960-0779(02)00079-6.![]() ![]() ![]() |
|
L. Chen
and F. Chen
, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009)
, 1330-1334.
doi: 10.1016/j.aml.2009.03.005.![]() ![]() ![]() |
|
S. Chen
, J. Shi
and J. Wei
, Global stability and Hopf bifurcation in a delayed difusive LeslieGower predator-prey system, Int. J. Bifurcat. Chaos, 22 (2012)
, 1250061, 11pp-1334.
![]() ![]() |
|
S. Chen
, J. Shi
and J. Wei
, The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response, Commun. Pur. Appl. Anal., 12 (2013)
, 481-501.
![]() ![]() |
|
J. Collings
, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997)
, 149-168.
doi: 10.1007/s002850050095.![]() ![]() ![]() |
|
T. Faria
, Normal forms and Hopf bifurcation for partial differential equations with delays, T. Am. Math. Soc., 352 (2000)
, 2217-2238.
doi: 10.1090/S0002-9947-00-02280-7.![]() ![]() ![]() |
|
P. Feng
and Y. Kang
, Dynamics of a modified Leslie-Gower model with double Allee efects, Nonlinear Dynam., 80 (2015)
, 1051-1062.
doi: 10.1007/s11071-015-1927-2.![]() ![]() ![]() |
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
![]() ![]() |
|
G. Guo
, B. Li
, M. Wei
and J. Huang
, Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 391 (2012)
, 265-277.
doi: 10.1016/j.jmaa.2012.02.012.![]() ![]() ![]() |
|
G. Hu
and W. Li
, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonl. Anal. Real World Appl., 11 (2010)
, 819-826.
doi: 10.1016/j.nonrwa.2009.01.027.![]() ![]() ![]() |
|
J. Jin
, J. Shi
, J. Wei
and F. Yi
, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mt. J. Math., 43 (2013)
, 1637-1674.
doi: 10.1216/RMJ-2013-43-5-1637.![]() ![]() ![]() |
|
Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York, 1998.
![]() ![]() |
|
P. Leslie
, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958)
, 16-31.
doi: 10.1093/biomet/45.1-2.16.![]() ![]() ![]() |
|
P. Leslie
and J. Gower
, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960)
, 219-234.
doi: 10.1093/biomet/47.3-4.219.![]() ![]() ![]() |
|
X. Li
, W. Jiang
and J. Shi
, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA. J. Appl. Math., 78 (2013)
, 287-306.
doi: 10.1093/imamat/hxr050.![]() ![]() ![]() |
|
P. Liu
, J. Shi
, W. Wang
and X. Feng
, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013)
, 2001-2019.
doi: 10.1007/s10910-013-0196-x.![]() ![]() ![]() |
|
M. Liu
and K. Wang
, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal. Theor., 85 (2013)
, 204-213.
doi: 10.1016/j.na.2013.02.018.![]() ![]() ![]() |
|
Y. Ma
, Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays, Nonl. Anal. Real World Appl., 13 (2012)
, 370-375.
doi: 10.1016/j.nonrwa.2011.07.045.![]() ![]() ![]() |
|
J. Murray, Mathematical Biology, 2nd edition, Springer-Verlag Berlin Heidelberg, New York, 1993.
![]() ![]() |
|
Y. Song
, T. Zhang
and Y. Peng
, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016)
, 229-258.
doi: 10.1016/j.cnsns.2015.10.002.![]() ![]() ![]() |
|
Y. Song
and X. Zhou
, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonliner Dynam., 78 (2014)
, 49-70.
doi: 10.1007/s11071-014-1421-2.![]() ![]() ![]() |
|
X. Tang
, Y. Song
and T. Zhang
, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonliner Dynam., 86 (2016)
, 73-89.
doi: 10.1007/s11071-016-2873-3.![]() ![]() ![]() |
|
J. Wollkind
, J. Collings
and A. Logan
, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, B. Math. Biol., 50 (1988)
, 379-409.
doi: 10.1007/BF02459707.![]() ![]() ![]() |
|
R. Yang
and Y. Song
, Spatial resonance and Turing-Hopf bifurcation in the Gierer-Meinhardt model, Nonl. Anal. Real World Appl., 31 (2016)
, 356-387.
doi: 10.1016/j.nonrwa.2016.02.006.![]() ![]() ![]() |
|
F. Yi
, J. Wei
and J. Shi
, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal. Real World Appl., 9 (2008)
, 1038-1051.
doi: 10.1016/j.nonrwa.2007.02.005.![]() ![]() ![]() |
|
F. Yi
, J. Wei
and J. Shi
, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009)
, 1944-1977.
doi: 10.1016/j.jde.2008.10.024.![]() ![]() ![]() |
|
J. Zhou
, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent difusion, Nonlinear Anal. Theor., 82 (2013)
, 47-65.
doi: 10.1016/j.na.2012.12.014.![]() ![]() ![]() |
Stability region and bifurcation diagram for system (5) at the unique positive equilibrium
Bifurcation diagrams and dynamical classification near the Turing-Hopf point
When
When
When
When
When
When