\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness of positive solutions of a system of nonlinear delay differential equations

Abstract Full Text(HTML) Figure(2) / Table(4) Related Papers Cited by
  • In this manuscript the system of nonlinear delay differential equations $\dot{x}_i(t) =\sum\limits_{j =1}^{n}\sum\limits_{\ell =1}^{n_0}α_{ij\ell} (t) h_{ij}(x_j(t-τ_{ij\ell}(t)))$$-β_i(t)f_i(x_i(t))+ρ_i(t)$, $t≥0$, $1≤i ≤n$ is considered. Sufficient conditions are established for the uniform permanence of the positive solutions of the system. In several particular cases, explicit formulas are given for the estimates of the upper and lower limit of the solutions. In a special case, the asymptotic equivalence of the solutions is investigated.

    Mathematics Subject Classification: Primary: 34K12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Numerical solution of the System (27).

    Figure 2.  Numerical solution of the System (40).

    Table 1.  Numerical solution of the System (28)

    $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$ $\underline{x}_3^{(k)}$
    $0$ $0$ $0$ $0$
    $1$ $0.3761$ $1.7105$ $1.9834$
    $2$ $1.8185$ $4.8060$ $3.7077$
    $3$ $ 3.6353$ $7.5553$ $5.9214$
    $4$ $ 4.0406$ $7.9252$ $6.4602$
    $5$ $4.4130$ $8.1962$ $6.9628$
    $6$ $4.5364$ $8.2765$ $7.1294$
    $7$ $ 4.5767$ $8.3023$ $7.1836$
    $8$ $ 4.5958$ $8.3146$ $7.2092$
    $9$ $4.5960$ $ 8.3147$ $7.2095$
    $10$ $4.5960$ $ 8.3147$ $7.2095$
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical solution of the System (30)

    $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$ $\overline{x}_3^{(k)}$
    $0$ $0$ $0$ $0$
    $1$ $0.6849$ $2.0198$ $ 2.8145$
    $2$ $2.9151$ $5.9799$ $ 5.0354$
    $3$ $5.5288$ $9.7858$ $7.5194$
    $4$ $6.4086$ $10.7362$ $8.3557$
    $5$ $6.6740$ $11.0053$ $8.6081$
    $6$ $6.7520$ $11.0838$ $8.6822$
    $7$ $6.7747$ $11.1067$ $8.7038$
    $8$ $ 6.7839$ $11.1159$ $ 8.7125$
    $9$ $6.7840$ $11.1161$ $8.7126$
    $10$ $6.7840$ $11.1161$ $8.7126$
     | Show Table
    DownLoad: CSV

    Table 3.  Numerical solution of the System (41)

    $k$ $\underline{x}_1^{(k)}$ $\underline{x}_2^{(k)}$
    $0$ $0$ $0$
    $1$ $3.4641$ $1.0831$
    $2$ $4.7663$ $2.5795$
    $3$ $5.2031$ $3.7627$
    $4$ $5.4246$ $4.8659$
    $5$ $5.4659$ $5.1549$
    $6$ $5.4721$ $5.2008$
    $7$ $5.4751$ $5.2419$
    $8$ $5.4777$ $5.2429$
    $9$ $ 5.4778$ $5.2430$
    $10$ $ 5.4778$ $5.2430$
     | Show Table
    DownLoad: CSV

    Table 4.  Numerical solution of the System (43)

    $k$ $\overline{x}_1^{(k)}$ $\overline{x}_2^{(k)}$
    $0$ $0$ $0$
    $1$ $ 4.4721$ $4.6552$
    $2$ $6.3445$ $7.3850$
    $3$ $7.0199$ $8.5877$
    $4$ $7.2586$ $9.0666$
    $5$ $7.3436$ $9.2503$
    $6$ $7.3744$ $9.3198$
    $7$ $7.3918$ $9.3608$
    $8$ $7.3920$ $9.3615$
    $9$ $7.3921$ $9.3616$
    $10$ $7.3921$ $9.3616$
     | Show Table
    DownLoad: CSV
  •   J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, On a delay population model with quadratic nonlinearity, Adv. Difference Equ. 2012 (2012), 9pp. doi: 10.1186/1687-1847-2012-230.
      J. Baštinec , L. Berezansky , J. Diblik  and  Z. Šmarda , On a delay population model with a quadratic nonlinearity without positive steady state, Appl. Math. Comput., 227 (2014) , 622-629.  doi: 10.1016/j.amc.2013.11.061.
      J. Bélair , S. A. Campbell  and  P. van den Driessche , Frustration, stability, and delay-induced oscillations in a neural network nodel, SIAM J. Appl. Math., 56 (1996) , 245-255.  doi: 10.1137/S0036139994274526.
      L. Berezansky , E. Braverman  and  L. Idels , Nicholson's blowflies differential equations revisited: main results and open problems, Appl. Math. Model., 34 (2010) , 1405-1417.  doi: 10.1016/j.apm.2009.08.027.
      L. Berezansky  and  E. Braverman , On stability of cooperative and hereditary systems with a distributed delay, Nonlinearity, 28 (2015) , 1745-1760.  doi: 10.1088/0951-7715/28/6/1745.
      L. Berezansky  and  E. Braverman , Boundedness and persistence of delay differential equations with mixed nonlinearity, Appl. Math. Comput., 279 (2016) , 154-169.  doi: 10.1016/j.amc.2016.01.015.
      L. Berezansky , L. Idels  and  L. Troib , Global dynamics of Nicholson-type delay systems with applications, Nonlinear Anal. Real World Appl., 12 (2011) , 436-445.  doi: 10.1016/j.nonrwa.2010.06.028.
      G. I. Bischi, Compartmental analysis of economic systems with heterogeneous agents: An introduction, in Beyond the Representative Agent, ed. A. Kirman, M. Gallegati (Elgar Pub. Co., 1998), 181-214.
      R. F. Brown , Compartmental system analysis: State of the art, IEEE Trans. Biomed. Eng., BME-27 (1980) , 1-11.  doi: 10.1109/TBME.1980.326685.
      M. Budincevic , A comparison theorem of differential equations, Novi Sad J. Math., 40 (2010) , 55-56. 
      A. Chen , L. Huang  and  J. Cao , Existence and stability of almost periodic solution for BAM neural networks with delays, Appl. Math. Comput., 137 (2003) , 177-193.  doi: 10.1016/S0096-3003(02)00095-4.
      P. Das , A. B. Roy  and  A. Das , Stability and oscillations of a negative feedback delay model for the control of testosterone secretion, BioSystems, 32 (1994) , 61-69.  doi: 10.1016/0303-2647(94)90019-1.
      P. van den Driessche  and  X. Zou , Global attractivity in delayed Hopfield neural network models, SIAM J. on Appl. Math., 58 (1998) , 1878-1890.  doi: 10.1137/S0036139997321219.
      T. Faria , A note on permanence of nonautonomous cooperative scalar population models with delays, Appl. Math. Comput., 240 (2014) , 82-90.  doi: 10.1016/j.amc.2014.04.040.
      T. Faria , Persistence and permanence for a class of functional differential equations with infinite delay, J. Dyn. Diff. Equat., 28 (2016) , 1163-1186.  doi: 10.1007/s10884-015-9462-x.
      T. Faria  and  G. Röst , Persistence, permanence and global stability for an n-dimensional Nicholson system, J. Dyn. Diff. Equat., 26 (2014) , 723-744.  doi: 10.1007/s10884-014-9381-2.
      K. Gopalsamy  and  X. He , Stability in asymmetric Hopfield nets with transmission delays, Phys. D., 76 (1994) , 344-358.  doi: 10.1016/0167-2789(94)90043-4.
      W. S. C. Gurney , S. P. Blythe  and  R. M. Nisbet , Nicholson's blowflies revisited, Nature, 287 (1980) , 17-21.  doi: 10.1038/287017a0.
      I. Győri , Connections between compartmental systems with pipes and integro-differential equations, Math. Model., 7 (1986) , 1215-1238.  doi: 10.1016/0270-0255(86)90077-1.
      I. Győri  and  J. Eller , Compartmental systems with pipes, Math. Biosci., 53 (1981) , 223-247.  doi: 10.1016/0025-5564(81)90019-5.
      I. Győri , F. Hartung  and  N. A. Mohamady , On a nonlinear delay population model, Appl. Math. Comput., 270 (2015) , 909-925.  doi: 10.1016/j.amc.2015.08.090.
      I. Győri , F. Hartung  and  N. A. Mohamady , Existence and uniqueness of positive solutions of a system of nonlinear algebraic equations, Period. Math. Hung., 75 (2017) , 114-127.  doi: 10.1007/s10998-016-0179-3.
      J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-stage neurons, Proc. Nat. Acad. Sci., U. S. A. 81 (1984), 3088-3092.
      J. A. Jacquez  and  C. P. Simon , Qualitative theory of compartmental systems with lags, Math. Biosci., 180 (2002) , 329-362.  doi: 10.1016/S0025-5564(02)00131-1.
      Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, MA, 1993.
      B. Liu , Global stability of a class of Nicholson's blowflies model with patch structure and multiple time-varying delays, Nonlinear Anal. Real World Appl., 11 (2010) , 2557-2562.  doi: 10.1016/j.nonrwa.2009.08.011.
  • 加载中

Figures(2)

Tables(4)

SHARE

Article Metrics

HTML views(542) PDF downloads(493) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return