
-
Previous Article
Large deviation principle for the micropolar, magneto-micropolar fluid systems
- DCDS-B Home
- This Issue
-
Next Article
Hopf bifurcation of an age-structured virus infection model
Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis
1. | Departament de Matemàtiques, Facultat de Ciències Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Ⅷ-Región, Chile |
3. | Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Ⅷ-región, Chile |
We provide the phase portraits in the Poincaré disk for all the linear type centers of polynomial Hamiltonian systems with nonlinearities of degree $4$ symmetric with respect to the $y$-axis given by the Hamiltonian function $H(x,y) =1/2(x^2+y^2)+ax^4y+bx^2y^3+cy^5$ in function of its parameters.
References:
[1] |
V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equations. Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988. |
[2] |
J. C. Artés and J. Llibre,
Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.
doi: 10.1006/jdeq.1994.1004. |
[3] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 1954 (1954), 1-19. |
[4] |
J. Chavarriga and J. Giné,
Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996), 21-39.
doi: 10.5565/PUBLMAT_40196_03. |
[5] |
J. Chavarriga and J. Giné,
Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997), 335-356.
doi: 10.5565/PUBLMAT_41297_02. |
[6] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. of Math. Anal. and Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[7] |
I. Colak, J. Llibre and C. Valls,
Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.
doi: 10.1016/j.jde.2014.05.024. |
[8] |
H. Dulac,
Détermination et integration d' une certaine classe d' équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér.(2), 32 (1908), 230-252.
|
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Spring-Verlag, 2006. |
[10] |
I. Iliev,
On second order bifurcations of limit cycles, J. London Math. Soc (2), 58 (1998), 353-366.
doi: 10.1112/S0024610798006486. |
[11] |
W. Kapteyn,
On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, 19 (1911), 1446-1457.
|
[12] |
W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27-33 (in Dutch). |
[13] |
J. Llibre and A. C. Mereu,
Limit cycles for a class of discontinuous generalized Lienard polynomial differential equations, Electronic J. of Differential Equations, 2013 (2013), 1-8.
|
[14] |
K. E. Malkin,
Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964), 87-91.
|
[15] |
L. Markus,
Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954), 127-148.
doi: 10.1090/S0002-9947-1954-0060657-0. |
[16] |
D. A. Neumann,
Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.
doi: 10.1090/S0002-9939-1975-0356138-6. |
[17] |
M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, 389-420, Acad. Press, New York, 1973. |
[18] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1 (1951), 3-84. |
[19] |
C. Rousseau and D. Schlomiuk,
Cubic vector fields symmetric with respect to a center, J. Differential Equations, 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[20] |
D. Schlomiuk,
Algebraic particular integrals, integrability and the problem of the centre, Trans. Amer. Math. Soc., 338 (1993), 799-841.
doi: 10.1090/S0002-9947-1993-1106193-6. |
[21] |
N. I. Vulpe,
Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differentsial?nye Uravneniya, 19 (1983), 371-379.
|
[22] |
N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[23] |
H. Żołądek,
The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79-136.
doi: 10.12775/TMNA.1994.024. |
[24] |
H. Żołądek, Remarks on: 'The classification of reversible cubic systems with center', Topol. Methods Nonlinear Anal., 4 (1994), 79-136], Topol. Methods Nonlinear Anal., 8 (1996), 335-342. |
show all references
References:
[1] |
V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equations. Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988. |
[2] |
J. C. Artés and J. Llibre,
Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.
doi: 10.1006/jdeq.1994.1004. |
[3] |
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 1954 (1954), 1-19. |
[4] |
J. Chavarriga and J. Giné,
Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996), 21-39.
doi: 10.5565/PUBLMAT_40196_03. |
[5] |
J. Chavarriga and J. Giné,
Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997), 335-356.
doi: 10.5565/PUBLMAT_41297_02. |
[6] |
A. Cima and J. Llibre,
Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. of Math. Anal. and Appl., 147 (1990), 420-448.
doi: 10.1016/0022-247X(90)90359-N. |
[7] |
I. Colak, J. Llibre and C. Valls,
Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014), 1623-1661.
doi: 10.1016/j.jde.2014.05.024. |
[8] |
H. Dulac,
Détermination et integration d' une certaine classe d' équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér.(2), 32 (1908), 230-252.
|
[9] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Spring-Verlag, 2006. |
[10] |
I. Iliev,
On second order bifurcations of limit cycles, J. London Math. Soc (2), 58 (1998), 353-366.
doi: 10.1112/S0024610798006486. |
[11] |
W. Kapteyn,
On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, 19 (1911), 1446-1457.
|
[12] |
W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27-33 (in Dutch). |
[13] |
J. Llibre and A. C. Mereu,
Limit cycles for a class of discontinuous generalized Lienard polynomial differential equations, Electronic J. of Differential Equations, 2013 (2013), 1-8.
|
[14] |
K. E. Malkin,
Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964), 87-91.
|
[15] |
L. Markus,
Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954), 127-148.
doi: 10.1090/S0002-9947-1954-0060657-0. |
[16] |
D. A. Neumann,
Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975), 73-81.
doi: 10.1090/S0002-9939-1975-0356138-6. |
[17] |
M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, 389-420, Acad. Press, New York, 1973. |
[18] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1 (1951), 3-84. |
[19] |
C. Rousseau and D. Schlomiuk,
Cubic vector fields symmetric with respect to a center, J. Differential Equations, 123 (1995), 388-436.
doi: 10.1006/jdeq.1995.1168. |
[20] |
D. Schlomiuk,
Algebraic particular integrals, integrability and the problem of the centre, Trans. Amer. Math. Soc., 338 (1993), 799-841.
doi: 10.1090/S0002-9947-1993-1106193-6. |
[21] |
N. I. Vulpe,
Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differentsial?nye Uravneniya, 19 (1983), 371-379.
|
[22] |
N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201. |
[23] |
H. Żołądek,
The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79-136.
doi: 10.12775/TMNA.1994.024. |
[24] |
H. Żołądek, Remarks on: 'The classification of reversible cubic systems with center', Topol. Methods Nonlinear Anal., 4 (1994), 79-136], Topol. Methods Nonlinear Anal., 8 (1996), 335-342. |











[1] |
Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121 |
[2] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[3] |
Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure and Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725 |
[4] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[5] |
Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387 |
[6] |
Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073 |
[7] |
Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 |
[8] |
Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767 |
[9] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[10] |
David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229 |
[11] |
Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337 |
[12] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[13] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[14] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[15] |
Wilker Fernandes, Viviane Pardini Valério, Patricia Tempesta. Isochronicity of bi-centers for symmetric quartic differential systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3991-4006. doi: 10.3934/dcdsb.2021215 |
[16] |
Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497 |
[17] |
José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357 |
[18] |
Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 |
[19] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[20] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]