March  2018, 23(2): 939-956. doi: 10.3934/dcdsb.2018049

Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming

1. 

Faculty of Physical Sciences, University of Iceland, Dunhagi 5, IS-107 Reykjavik, Iceland

2. 

Svensk Exportkredit, Klarabergsviadukten 61-63, 111 64 Stockholm, Sweden

3. 

Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom

Received  January 2017 Revised  August 2017 Published  March 2018 Early access  December 2017

We study the global asymptotic stability in probability of the zero solution of linear stochastic differential equations with constant coefficients. We develop a sum-of-squares program that verifies whether a parameterized candidate Lyapunov function is in fact a global Lyapunov function for such a system. Our class of candidate Lyapunov functions are naturally adapted to the problem. We consider functions of the form $V(\mathbf{x}) = \|\mathbf{x}\|_Q^p: = (\mathbf{x}^\top Q\mathbf{x})^{\frac{p}{2}}$, where the parameters are the positive definite matrix $Q$ and the number $p>0$. We give several examples of our proposed method and show how it improves previous results.

Citation: Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049
References:
[1]

J. Anderson and A. Papachristodoulou, Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.  doi: 10.3934/dcdsb.2015.20.2361.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[3]

C. Briat, Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints, Automatica, 74 (2016), 279-287.  doi: 10.1016/j.automatica.2016.08.001.

[4]

H. Bucky, Stability and positive supermartingales, J. Differ. Equations, 1 (1965), 151-155.  doi: 10.1016/0022-0396(65)90016-1.

[5]

J. Fisher and R. Bhattacharya, Stability analysis of stochastic systems using polynomial chaos, Proceedings of the American Control Conference 11-13 June 2008, (2008), 4250-4255.  doi: 10.1109/ACC.2008.4587161.

[6]

J. Fisher and R. Bhattacharya, Linear quadratic regulation of systems with stochastic parameter uncertainties, Automatica J. IFAC, 45 (2009), 2831-2841.  doi: 10.1016/j.automatica.2009.10.001.

[7]

P. Florchinger, Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim., 33 (1995), 1151-1169.  doi: 10.1137/S0363012993252309.

[8]

P. Giesl and S. Hafstein, Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.  doi: 10.3934/dcdsb.2015.20.2291.

[9]

L. Grüne and F. Camilli, Characterizing attraction probabilities via the stochastic Zubov equation, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 457-468.  doi: 10.3934/dcdsb.2003.3.457.

[10]

D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.  doi: 10.1007/BF01443605.

[11]

R. Kamyar and M. Peet, Polynomial optimization with applications to stability analysis and control -an alternative to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.  doi: 10.3934/dcdsb.2015.20.2383.

[12]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer, 2nd edition, 2012.

[13]

X. Mao, Stochastic Differential Equations and Applications, Woodhead Publishing, 2nd edition, 2008. doi: 10.1533/9780857099402.

[14]

J. Massera, Contributions to stability theory, Annals of Mathematics, 64 (1956), 182-206.  doi: 10.2307/1969955.

[15]

T. MikoschG. Samorodnitsky and L. Tafakori, Fractional moments of solutions to stochastic recurrence equations, Journal of Applied Probability, 50 (2013), 969-982.  doi: 10.1017/S0021900200013747.

[16] T. S. Motzkin, The arithmetic-geometric inequality, In Inequalities (Proc. Sympos. WrightPatterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967. 
[17]

R. Nigmatullin, The statistics of the fractional moments: Is there any chance to "read quantitatively" any randomness?, Signal Processing, 86 (2006), 2529-2547.  doi: 10.1016/j.sigpro.2006.02.003.

[18]

B. Øksendal, Stochastic Differential Equations, An introduction with applications. Sixth edition. Universitext. Springer-Verlag, Berlin, 2003.

[19]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, User's guide. Version 3. 00 edition, 2013.

[20]

B. Reznick, Uniform denominators in Hilbert's seventeenth problem, Math. Z., 220 (1995), 75-97.  doi: 10.1007/BF02572604.

[21]

B. Reznick, Some concrete aspects of Hilbert's 17th problem, Contemporary Mathematics, 253 (2000), 251-272. 

[22]

J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999), 625-653. 

[23]

T. Tamba and M. Lemmon, Stochastic reachability of jump-diffusion process using sum of squares optimization, unpublished, see https://www3.nd.edu/~lemmon/projects/NSF-12-520/pubs/2014/TL_TAC14_2col.pdf, 2014.

[24]

U. Thygesen, A Survey of Lyapunov Techniques for Stochastic Differential Equations, IMM Technical Report, 1997.

[25]

VanAntwerp and Braatz, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10 (2000), 363-385.  doi: 10.1016/S0959-1524(99)00056-6.

show all references

References:
[1]

J. Anderson and A. Papachristodoulou, Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.  doi: 10.3934/dcdsb.2015.20.2361.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[3]

C. Briat, Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints, Automatica, 74 (2016), 279-287.  doi: 10.1016/j.automatica.2016.08.001.

[4]

H. Bucky, Stability and positive supermartingales, J. Differ. Equations, 1 (1965), 151-155.  doi: 10.1016/0022-0396(65)90016-1.

[5]

J. Fisher and R. Bhattacharya, Stability analysis of stochastic systems using polynomial chaos, Proceedings of the American Control Conference 11-13 June 2008, (2008), 4250-4255.  doi: 10.1109/ACC.2008.4587161.

[6]

J. Fisher and R. Bhattacharya, Linear quadratic regulation of systems with stochastic parameter uncertainties, Automatica J. IFAC, 45 (2009), 2831-2841.  doi: 10.1016/j.automatica.2009.10.001.

[7]

P. Florchinger, Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim., 33 (1995), 1151-1169.  doi: 10.1137/S0363012993252309.

[8]

P. Giesl and S. Hafstein, Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.  doi: 10.3934/dcdsb.2015.20.2291.

[9]

L. Grüne and F. Camilli, Characterizing attraction probabilities via the stochastic Zubov equation, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 457-468.  doi: 10.3934/dcdsb.2003.3.457.

[10]

D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.  doi: 10.1007/BF01443605.

[11]

R. Kamyar and M. Peet, Polynomial optimization with applications to stability analysis and control -an alternative to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2383-2417.  doi: 10.3934/dcdsb.2015.20.2383.

[12]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer, 2nd edition, 2012.

[13]

X. Mao, Stochastic Differential Equations and Applications, Woodhead Publishing, 2nd edition, 2008. doi: 10.1533/9780857099402.

[14]

J. Massera, Contributions to stability theory, Annals of Mathematics, 64 (1956), 182-206.  doi: 10.2307/1969955.

[15]

T. MikoschG. Samorodnitsky and L. Tafakori, Fractional moments of solutions to stochastic recurrence equations, Journal of Applied Probability, 50 (2013), 969-982.  doi: 10.1017/S0021900200013747.

[16] T. S. Motzkin, The arithmetic-geometric inequality, In Inequalities (Proc. Sympos. WrightPatterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967. 
[17]

R. Nigmatullin, The statistics of the fractional moments: Is there any chance to "read quantitatively" any randomness?, Signal Processing, 86 (2006), 2529-2547.  doi: 10.1016/j.sigpro.2006.02.003.

[18]

B. Øksendal, Stochastic Differential Equations, An introduction with applications. Sixth edition. Universitext. Springer-Verlag, Berlin, 2003.

[19]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, User's guide. Version 3. 00 edition, 2013.

[20]

B. Reznick, Uniform denominators in Hilbert's seventeenth problem, Math. Z., 220 (1995), 75-97.  doi: 10.1007/BF02572604.

[21]

B. Reznick, Some concrete aspects of Hilbert's 17th problem, Contemporary Mathematics, 253 (2000), 251-272. 

[22]

J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999), 625-653. 

[23]

T. Tamba and M. Lemmon, Stochastic reachability of jump-diffusion process using sum of squares optimization, unpublished, see https://www3.nd.edu/~lemmon/projects/NSF-12-520/pubs/2014/TL_TAC14_2col.pdf, 2014.

[24]

U. Thygesen, A Survey of Lyapunov Techniques for Stochastic Differential Equations, IMM Technical Report, 1997.

[25]

VanAntwerp and Braatz, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10 (2000), 363-385.  doi: 10.1016/S0959-1524(99)00056-6.

Table 1.  Results of checking whether $P_c(\mathbf{x})$ for system (14) can be written as SOS. No solution means that even for $c = 0$ SOSTOOLS was not able to write $P_c(\mathbf{x})$ as SOS. In all the experiments we set $\sigma = 2.0$. In experiments $\#1$ to $\#4$ we set $k = 1.5$ and in experiments $\#5$ to $\#9$ we set $k = 0.9$.
# $\omega$ $p$ $c$ $D_{11}$ $D_{22}$ $D_{33}$ $O$
1 3.0 0.5 1.6875 40.569 0.0131 8.6916 $\begin{pmatrix} -0.2380& 0.1543& 0.9590 \\ -0.8442&0.4555&-0.2827 \\ 0.4804&0.8768& -0.0218\\ \end{pmatrix}$
2 3.0 1.0 0.6250 24.016 7.8514 0.0655 $\begin{pmatrix} -0.3602& 0.1540& 0.9200 \\ -0.7665& 0.5134& -0.3860 \\ 0.5318&0.8442&0.0669\\ \end{pmatrix}$
3 3.0 1.1 0.2500 20.913 7.6978 0.1488 $\begin{pmatrix}-0.4043& 0.1477& 0.9026\\ -0.7377& 0.5308&-0.4173\\ 0.5407&0.8346& 0.1057 \\ \end{pmatrix}$
4 3.0 1.2 - - - - no solution
5 4.0 0.1 1.0000 0.0296 8.463 45.200 $\begin{pmatrix} -0.8104&0.4716&-0.3476\\ 0.4819&0.8740&0.0621\\ -0.3331&0.1172&0.9356\\ \end{pmatrix}$
6 3.5 0.1 0.6600 45.967 0.0093 7.8397 $\begin{pmatrix} -0.3094&0.1190& 0.9435\\ -0.8109&0.4852&-0.3271\\ 0.4967&0.8663& 0.0536\\ \end{pmatrix}$
7 3.0 0.1 0.25 47.020 0.0193 7.7424 $\begin{pmatrix} -0.2913&0.1212& 0.9489\\ -0.8304&0.4605& -0.3137\\ 0.4750& 0.8793& 0.0335\\ \end{pmatrix}$
8 2.75 0.1 0.05 47.486 0.0159 7.5072 $\begin{pmatrix} -0.2806& 0.1218& 0.9521\\ -0.8335& 0.4609&-0.3046\\ 0.4759& 0.8791& 0.0278\\ \end{pmatrix}$
9 2.5 0.1 - - - - $\text{no solution}$
# $\omega$ $p$ $c$ $D_{11}$ $D_{22}$ $D_{33}$ $O$
1 3.0 0.5 1.6875 40.569 0.0131 8.6916 $\begin{pmatrix} -0.2380& 0.1543& 0.9590 \\ -0.8442&0.4555&-0.2827 \\ 0.4804&0.8768& -0.0218\\ \end{pmatrix}$
2 3.0 1.0 0.6250 24.016 7.8514 0.0655 $\begin{pmatrix} -0.3602& 0.1540& 0.9200 \\ -0.7665& 0.5134& -0.3860 \\ 0.5318&0.8442&0.0669\\ \end{pmatrix}$
3 3.0 1.1 0.2500 20.913 7.6978 0.1488 $\begin{pmatrix}-0.4043& 0.1477& 0.9026\\ -0.7377& 0.5308&-0.4173\\ 0.5407&0.8346& 0.1057 \\ \end{pmatrix}$
4 3.0 1.2 - - - - no solution
5 4.0 0.1 1.0000 0.0296 8.463 45.200 $\begin{pmatrix} -0.8104&0.4716&-0.3476\\ 0.4819&0.8740&0.0621\\ -0.3331&0.1172&0.9356\\ \end{pmatrix}$
6 3.5 0.1 0.6600 45.967 0.0093 7.8397 $\begin{pmatrix} -0.3094&0.1190& 0.9435\\ -0.8109&0.4852&-0.3271\\ 0.4967&0.8663& 0.0536\\ \end{pmatrix}$
7 3.0 0.1 0.25 47.020 0.0193 7.7424 $\begin{pmatrix} -0.2913&0.1212& 0.9489\\ -0.8304&0.4605& -0.3137\\ 0.4750& 0.8793& 0.0335\\ \end{pmatrix}$
8 2.75 0.1 0.05 47.486 0.0159 7.5072 $\begin{pmatrix} -0.2806& 0.1218& 0.9521\\ -0.8335& 0.4609&-0.3046\\ 0.4759& 0.8791& 0.0278\\ \end{pmatrix}$
9 2.5 0.1 - - - - $\text{no solution}$
[1]

Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080

[2]

Fabio Camilli, Lars Grüne. Characterizing attraction probabilities via the stochastic Zubov equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 457-468. doi: 10.3934/dcdsb.2003.3.457

[3]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

[6]

Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33

[7]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[8]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[9]

Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056

[10]

Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1249-1274. doi: 10.3934/dcds.2009.25.1249

[11]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[12]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[13]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[14]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[15]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[16]

Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457

[17]

Peter Giesl, Holger Wendland. Approximating the basin of attraction of time-periodic ODEs by meshless collocation of a Cauchy problem. Conference Publications, 2009, 2009 (Special) : 259-268. doi: 10.3934/proc.2009.2009.259

[18]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[19]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[20]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (706)
  • HTML views (291)
  • Cited by (1)

[Back to Top]