|
J. Anderson
and A. Papachristodoulou
, Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361.
|
|
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,
Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
|
|
C. Briat
, Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints, Automatica, 74 (2016)
, 279-287.
doi: 10.1016/j.automatica.2016.08.001.
|
|
H. Bucky
, Stability and positive supermartingales, J. Differ. Equations, 1 (1965)
, 151-155.
doi: 10.1016/0022-0396(65)90016-1.
|
|
J. Fisher
and R. Bhattacharya
, Stability analysis of stochastic systems using polynomial chaos, Proceedings of the American Control Conference 11-13 June 2008, (2008)
, 4250-4255.
doi: 10.1109/ACC.2008.4587161.
|
|
J. Fisher
and R. Bhattacharya
, Linear quadratic regulation of systems with stochastic parameter uncertainties, Automatica J. IFAC, 45 (2009)
, 2831-2841.
doi: 10.1016/j.automatica.2009.10.001.
|
|
P. Florchinger
, Lyapunov-like techniques for stochastic stability, SIAM J. Control Optim., 33 (1995)
, 1151-1169.
doi: 10.1137/S0363012993252309.
|
|
P. Giesl
and S. Hafstein
, Review of computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291.
|
|
L. Grüne
and F. Camilli
, Characterizing attraction probabilities via the stochastic Zubov equation, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003)
, 457-468.
doi: 10.3934/dcdsb.2003.3.457.
|
|
D. Hilbert
, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888)
, 342-350.
doi: 10.1007/BF01443605.
|
|
R. Kamyar
and M. Peet
, Polynomial optimization with applications to stability analysis and control -an alternative to sum of squares, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 2383-2417.
doi: 10.3934/dcdsb.2015.20.2383.
|
|
R. Khasminskii, Stochastic Stability of Differential Equations, Springer, 2nd edition, 2012.
|
|
X. Mao,
Stochastic Differential Equations and Applications, Woodhead Publishing, 2nd edition, 2008.
doi: 10.1533/9780857099402.
|
|
J. Massera
, Contributions to stability theory, Annals of Mathematics, 64 (1956)
, 182-206.
doi: 10.2307/1969955.
|
|
T. Mikosch
, G. Samorodnitsky
and L. Tafakori
, Fractional moments of solutions to stochastic recurrence equations, Journal of Applied Probability, 50 (2013)
, 969-982.
doi: 10.1017/S0021900200013747.
|
|
T. S. Motzkin, The arithmetic-geometric inequality, In Inequalities (Proc. Sympos. WrightPatterson Air Force Base, Ohio, 1965), Academic Press, New York, 1967.
|
|
R. Nigmatullin
, The statistics of the fractional moments: Is there any chance to "read quantitatively" any randomness?, Signal Processing, 86 (2006)
, 2529-2547.
doi: 10.1016/j.sigpro.2006.02.003.
|
|
B. Øksendal,
Stochastic Differential Equations, An introduction with applications. Sixth edition. Universitext. Springer-Verlag, Berlin, 2003.
|
|
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Pranja, P. Seiler and P. Parrilo,
SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, User's guide. Version 3. 00 edition, 2013.
|
|
B. Reznick
, Uniform denominators in Hilbert's seventeenth problem, Math. Z., 220 (1995)
, 75-97.
doi: 10.1007/BF02572604.
|
|
B. Reznick
, Some concrete aspects of Hilbert's 17th problem, Contemporary Mathematics, 253 (2000)
, 251-272.
|
|
J. Sturm
, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999)
, 625-653.
|
|
T. Tamba and M. Lemmon, Stochastic reachability of jump-diffusion process using sum of squares optimization, unpublished, see https://www3.nd.edu/~lemmon/projects/NSF-12-520/pubs/2014/TL_TAC14_2col.pdf, 2014.
|
|
U. Thygesen,
A Survey of Lyapunov Techniques for Stochastic Differential Equations, IMM Technical Report, 1997.
|
|
VanAntwerp
and Braatz
, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10 (2000)
, 363-385.
doi: 10.1016/S0959-1524(99)00056-6.
|