K | $\varepsilon$ | $APD_{1}$ |
-0.1 | 9 ms | 240 ms |
-0.1 | 7.7 ms | 198 ms |
The alternans of the cardiac action potential duration is a pathological rhythm. It is considered to be relating to the onset of ventricular fibrillation and sudden cardiac death. It is well known that, the predictive control is among the control methods that use the chaos to stabilize the unstable fixed point. Firstly, we show that alternans (or period-2 orbit) can be suppressed temporally by the predictive control of the periodic state of the system. Secondly, we determine an estimation of the size of a restricted attraction's basin of the unstable equilibrium point representing the unstable regular rhythm stabilized by the control. This result allows the application of predictive control after one beat of alternans. In particular, using predictive control of periodic dynamics, we can delay the onset of bifurcations and direct a trajectory to a desired target stationary state. Examples of the numerical results showing the stabilization of the unstable normal rhythm are given.
Citation: |
Figure 1. The time evolution of transmembrane action potential using cable simulations (Beeler-Reuter model) for a periodically paced cell: (a) the response $1:1$, (b) the presence of alternans $2:2$, (c) the response $2:1$, (d) the irregular response. APD means Action Potential Duration, DI means Diastolic Interval.
Figure 2. Bifurcation diagram from [29]
Figure 6. Bifurcation diagram ($APD_i$ vs. $t_s$) with predictive control for $t_s = 200-400$ $ms$. At each $t_s$, the controlled map (3) was iterated 20000 times and the first 19800 iterates discarded to suppress transients due to initial conditions. Increment in $t_s$ was $0.1$ $ms$. $APD_1 = 198$ $ms$, $\varepsilon = 7.7$ $ms$, $K = -0.2.$
Figure 9. Bifurcation diagram ($APD_i$ vs. $\varepsilon$) with predictive control for $\varepsilon = 0-15$ $ms$. At each $\varepsilon$, the controlled map (3) was iterated 20000 times and the first 19800 iterates discarded to suppress transients due to initial conditions. Increment in $\varepsilon$ was $0.1$ $ms$, $t_s = 302$ $ms$, $APD_1 = 240$ $ms$, $K = -0.1$.
Table 1.
Example of parameter values
K | $\varepsilon$ | $APD_{1}$ |
-0.1 | 9 ms | 240 ms |
-0.1 | 7.7 ms | 198 ms |
Table 2.
Example of parameter values
K | $\varepsilon$ | $APD_{1}$ |
-0.4 | 1.96 ms | 240 ms |
-0.4 | 1.96 ms | 202 ms |
S. Alonso
, F. Sagués
and A. S. Mikhailov
, Taming Winfree turbulence of scroll waves in excitable media, Science, 299 (2003)
, 1722-1725.
doi: 10.1126/science.1080207.![]() ![]() |
|
H. Arce
, A. Xu
, H. Gonzalez
and M. R. Guevara
, Alternans and higher-order rhythms in an ionic model of a sheet of ishemic ventricular muscle, Chaos, (2000)
, 1054-1500.
![]() |
|
G. W. Beeler
and H. Reuter
, Reconstruction of the action potential of ventricular myocardial fibers, J. Physiol, 268 (1977)
, 177-210.
![]() |
|
A. Beuter, L. Glass, M. C. Mackey and M. S. Titcombe, Nonlinear Dynamics Physiology and Medicine, Springer, 2003.
![]() |
|
R. R. Bitmead, M. Gevers and V. Wertz, Adaptive Optimal Contro, The Thinking GPC, Prentice-Hall, Englewood Cliffs, NJ, 1990.
![]() |
|
S. Boccaletti
, C. Grebogi
, Y. C. Lai
, H. Mancini
and D. Maza
, The control of chaos: Theory and applications, Physics Reports, 329 (2000)
, 103-197.
doi: 10.1016/S0370-1573(99)00096-4.![]() ![]() ![]() |
|
A. Boukabou
, A. Chebbah
and N. Mansouri
, Predictive control of continuous chaotic systems, Int. J. Bifurc. Chaos, 18 (2008)
, 587-592.
doi: 10.1142/S0218127408020501.![]() ![]() |
|
A. Boukabou, Méthodes de contrôle des systémes chaotiques d'ordre élevé et leur élevé et leur application pour la synchronisation : Contribution à l'élaboration de nouvelles approches, Thése de doctorat, Université de constantine 1,2006.
![]() |
|
M. E. Brandt
, H. T. Shih
and G. R. Chen
, Linear Time-delay Feedback Control of a Pathological Rhythm in a Cardiac Conduction Model, Phys. Revol. E, 56 (1997)
, 1334-1337.
![]() |
|
J. W. Cain, E. G. Tolkacheva, D. G. Schaeffer and D. J. Gauthier, Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber Phys. Rev. E, 70 (2004), 061906.
doi: 10.1103/PhysRevE.70.061906.![]() ![]() |
|
T. de Carvalho
, R. D. Euzébio
, J. Llibre
and D. J. Tonon
, Detecting periodic orbits in some 3D chaotic quadratic polynomial differential systems, Discrete and Continuous Dynamical Systems -Series B, 21 (2016)
, 1-11.
![]() ![]() |
|
D. R. Chialvo
, R. F. Gilmour
and J. Jalife
, Low dimensional chaos in cardiac tissue, Nature, 343 (1990)
, 653-657.
doi: 10.1038/343653a0.![]() ![]() |
|
D. J. Christini
, K. M. Stein
, S. M. Markowitz
, S. Mittal
, J. D. Slotwiner
and B. B. Lerman
, The role of non linear dynamics in cardiac arrhythmia control, Heart Dis., 1 (1999)
, 190-200.
![]() |
|
D. J. Christini
and L. Glass
, Introduction: Mapping and control of complex cardiac arrhythmias, Chaos, 12 (2002)
, ⅱ-ⅲ and 732-981.
![]() ![]() |
|
G. Corliss
, Which root does the bisection algorithm find?, SIAM Review, 19 (1977)
, 325-327.
doi: 10.1137/1019044.![]() ![]() ![]() |
|
S. Dai and D. G. Schaeffer, Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans Chaos, 20 (2010), 02313120, 8pp.
doi: 10.1063/1.3456058.![]() ![]() ![]() |
|
B. Echebarria
and A. Karma
, Spatiotemporal control of cardiac alternans, Chaos, 12 (2002)
, 923-930.
![]() |
|
A. Garfinkel
, M. L. Spano
, W. L. Ditto
and J. N. Weiss
, Controlling cardiac chaos, Science, 257 (1992)
, 1230-1235.
doi: 10.1126/science.1519060.![]() ![]() |
|
A. Garfinkel
, J. N. Weiss
, W. L. Ditto
and M. L. Spano
, Chaos control of cardiac arrhythmias, Elsevier Science Inc, 94 (1995)
, 76-80.
doi: 10.1016/1050-1738(94)00083-2.![]() ![]() |
|
A. Garfinkel
, P. S. Chen
, D. O. Walter
, H. S. Karagueuzian
, B. Kogan
, S. J. Evans
, M. Karpoukhin
, C. Hwang
, T. Uchida
, M. Gotoh
, O. Nwasokwa
, P. Sager
and J. N. Weiss
, Quasiperiodicity and chaos in cardiac fibrillation, J. Clin. Invest., 99 (1997)
, 305-314.
doi: 10.1172/JCI119159.![]() ![]() |
|
M. R. Guevara, F. Alonso, D. Jeandupeux, A. G. Antoni and V. Ginneken, Alternans in periodically stimulated isolated ventricular myocytes: Experiment and model, In: Cell to Cell Signalling: From Experiments to Theoretical Models, edited by Goldbeter A. Academic Press, London, 1989.
![]() |
|
K. Hall
, D. J. Christini
, M. Tremblay
, J. J. Collins
, L. Glass
and J. Billette
, Dynamic control of cardiac alternans, Phys. Rev. Lett., 78 (1997)
, 4518-4521.
![]() |
|
G. M. Hall and D. J. Gauthier, Experimental control of cardiac muscle alternans Phys. Rev. Lett. , 88 (2002), 198102.
doi: 10.1103/PhysRevLett.88.198102.![]() ![]() |
|
X. Han
, Y. Chen
, W. Gao
, J. Xue
, X. Han
, Z. Fang
, C. Yang
and X. Wu
, Study of the restitution of action potential duration using the artificial neural network, Mathematical Bioscience, 207 (2007)
, 78-88.
doi: 10.1016/j.mbs.2006.09.019.![]() ![]() ![]() |
|
H. M. Hastings, F. H. Fenton, S. J. Evans, O. Hotomaroglu, J. Geetha, K. Gittelson and J. Nilson, A. Garfinkel, Alternans and the onset of ventricular fibrillation, Phys. Rev. E, 62 (2000), p4043.
![]() |
|
S. Jin Yoo
, J. Bac Park
and Y. Hochoi
, Stable predictive Control of chaotic system using self -Recurrent wavelet Neural Network, International Journal of Control, Automation, and Systems, 3 (2005)
, 43-55.
![]() |
|
P. N. Jordan
and D. J. Christini
, Adaptive diastolic interval control of cardiac action potential Duration alternans, J. Cardiovasc. Electrophysiol, 15 (2004)
, 1177-1185.
doi: 10.1046/j.1540-8167.2004.04098.x.![]() ![]() |
|
D. M. Le, A. V. Dvornikov, P. Y. Lai and C. K. Chan, Predicting Self-terminating Ventricular Fibrillation in an Isolated Heart Europhys. Lett. , 104 (2013), 48002.
doi: 10.1209/0295-5075/104/48002.![]() ![]() |
|
T. J. Lewis
and M. R. Guevara
, Chaotic dynamics in an ionic model of the propagated cardiac action potential, J. Theor. Biol., 146 (1990)
, 407-432.
doi: 10.1016/S0022-5193(05)80750-7.![]() ![]() |
|
S. W. Morgan, I. V. Biktasheva and V. N. Biktashev, Control of scroll wave turbulence using resonant perturbations, Phys. Rev. E, 78 (2008), 046207, 13pp.
![]() ![]() |
|
J. B. Nolasco
and R. W. Dahlen
, A graphic method for the study of alternation of cardiac action potentials", J. Appl. Physiol., 25 (1968)
, 191-196.
![]() |
|
E. Ott, C. Grebogi and J. A. York, Controlling chaos Phys. Rev. Lett. , 64 (1990), 2837.
doi: 10.1103/PhysRevLett.64.1196.![]() ![]() ![]() |
|
E. Ott, C. Grebogi and J. A. Yorke, Controlling chaotic dynamical systems, D. Campbell (Ed. ), Chaos/XAOC, Soviet-American Perspective on Nonlinear Science, American Institute of Physics, New York, 8 (1990).
![]() ![]() |
|
R. Pandit, A. Pande, S. Sinha and A. Sen, Spiral turbulence and spatiotemporal chaos: characterization and control in two excitable media, Physica A, 306 (2002), 211-21.
![]() |
|
K. D. Phung
, G. Wang
and X. Zhang
, On the existence of time optimal controls for linear evolution equations, Discrete and Continuous Dynamical Systems -Series B, 8 (2007)
, 925-941.
doi: 10.3934/dcdsb.2007.8.925.![]() ![]() ![]() |
|
K. Pyragas
, Continues control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992)
, 421-428.
![]() |
|
Z. Qu
, Nonlinear dynamic Control of Irregular Rythms, J. Cardiovasc. Electrophysiol., 15 (2004)
, 1186-1187.
![]() |
|
Z. Qu, J. N. Weiss and A. Garfinkel, Spatiotemporal Chaos in a Simulated Ring of Cardiac Cells Phys. Rev. Lett. , 78 (1997), p1387.
doi: 10.1103/PhysRevLett.78.1387.![]() ![]() |
|
W. J. Rappel
, F. Fenton
and A. Karma
, Spatiotemporal control of wave instabilities in cardiac tissue, Phys. Rev. Lett, 83 (1999)
, 456-459.
doi: 10.1103/PhysRevLett.83.456.![]() ![]() |
|
F. J. Romeiras
, C. Grebogi
, E. Ott
and W. P. Dayawansa
, Controlling chaotic dynamical systems, Physica D, 58 (1992)
, 165-192.
doi: 10.1016/0167-2789(92)90107-X.![]() ![]() ![]() |
|
T. Shinbrot
, C. Grebogi
, E. Ott
and J. Yorke
, Using chaos to target stationary states of flows, Physics Letters A, 169 (1992)
, 349-354.
doi: 10.1016/0375-9601(92)90239-I.![]() ![]() ![]() |
|
J. Smallwood
, Chaos Control of the Hénon map and an Impact Oscillator by the Ott-Grebogi-York Method, The Nonlinear Journal, 2 (2000)
, 37-44.
![]() |
|
E. G. Tolkacheva, M. M. Romeo, M. Guerraty and J. Daniel, condition for alternans and its controln in a two-dimensional mapping model of paced cardiac dynamics, Phys. Rev. E, 69 (2004), 031904.
![]() |
|
T. Ushio
and S. Yamamoto
, Prediction based control of chaos, Phy. Lett. A, 264 (1999)
, 30-35.
doi: 10.1016/S0375-9601(99)00782-3.![]() ![]() ![]() |
|
M. Watanabe
and Jr. Gilmour
, Strategy for control of complex lowdimensional dynamics in cardiac tissue, J Math. Biol., 35 (1996)
, 73-87.
doi: 10.1007/s002850050043.![]() ![]() ![]() |
|
J. N. Weiss
, A. Garfinkel
, M. L. Spano
and W. L. Ditto
, Chaos and chaos control in biology. The American society for clinical investigation, Inc, (1994)
, 1355-1360.
![]() |
|
B. Xu
, S. Jacquir
, G. Laurent
, J.-M. Bilbault
and S. Binczak
, Analysis of an experimental model of in vitro cardiac tissue using phase space reconstruction, Biomedical Signal Processing and Control, 13 (2014)
, 313-326.
![]() |
|
B. Xu
, S. Jacquir
, G. Laurent
, J.-M. Bilbault
and S. Binczak
, A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue, Chaos, Solitons and Fractals, 44 (2011)
, 633-639.
![]() |
|
G. Zheng-Ning and C. Xin-Ming, Distributed predictive control of spiral wave in cardiac excitable media Chin. Phys. B, 19 (2010), 050514.
doi: 10.1088/1674-1056/19/5/050514.![]() ![]() |
The time evolution of transmembrane action potential using cable simulations (Beeler-Reuter model) for a periodically paced cell: (a) the response
Bifurcation diagram from [29]
At
Initiation of predictive control of the alternans
Bifurcation diagram (
Bifurcation diagram (
Initiation of predictive control of periodic rhythm
The suppression of noisy alternans with the predictive control.
Bifurcation diagram (