
-
Previous Article
Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise
- DCDS-B Home
- This Issue
-
Next Article
A stochastic SIRI epidemic model with Lévy noise
Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching
Department of Applied Mathematics, Donghua University, Shanghai 201620, China |
In this paper, we consider long time behavior of the Cox-Ingersoll-Ross (CIR) interest rate model driven by stable processes with Markov switching. Under some assumptions, we prove an ergodicity-transience dichotomy, namely, the interest rate process is either ergodic or transient. The sufficient and necessary conditions for ergodicity and transience of such interest model are given under some assumptions. Finally, an application to interval estimation of the interest rate processes is presented to illustrate our results.
References:
[1] |
M.Abramowitz and I.A.Stegun,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons Incorporated, New York, 1984. |
[2] |
D.Applebaum,
Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2009. |
[3] |
A. Arapostathis, A. Biswas and L. Caffarelli,
The Dirichlet problem for stable like operators and related probabilistic representations, Commun. Part. Diff. Eq., 41 (2016), 1472-1511.
|
[4] |
A.Berman and R.J.Plemmons,
Nonnegative Matrices in the Mathematical Science, SIAM Press classics Series, Philadelphia, 1994. |
[5] |
Z. Chen and J. Wang,
Ergodicity for time-changed symmetric stable processes, Stoch. Proc. Appl., 124 (2014), 2799-2823.
doi: 10.1016/j.spa.2014.04.003. |
[6] |
A. Clauset, C. R. Shalizi and M. E. J. Newman,
Power-law distributions in empirical data, SIAM Rev., 51 (2009), 661-703.
doi: 10.1137/070710111. |
[7] |
J. C. Cox, J. E. Ingersoll and S. A. Ross,
A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242. |
[8] |
N.Fournier,
On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes,
Ann.Inst.Henri Poincaré Probab.Stat., 49 (2013), 138-159. |
[9] |
K. Handa,
Ergodic properties for $α$-CIR models and a class of generalized Fleming-Viot processes, Electron. J. Probab., 19 (2014), 1-25.
|
[10] |
Y. Jiao, C. Ma and S. Scotti,
Alpha-CIR model with branching processes in sovereign interest rate modelling, Financ. Stoch., 21 (2017), 789-813.
doi: 10.1007/s00780-017-0333-7. |
[11] |
R.Khasminskii,
Stochastic Stability of Differential Equations, Springer, Berlin, 2012. |
[12] |
X. Li, A. Gray, D. Jiang and X. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.
doi: 10.1016/j.jmaa.2010.10.053. |
[13] |
Z. Li and C. Ma,
Asymptptic properties of estimators in a stable Cox-Ingersoll-Ross model, Stoch. Proc. Appl., 125 (2015), 3196-3233.
doi: 10.1016/j.spa.2015.03.002. |
[14] |
B. B. Mandelbrot,
The variation of certain speculative prices, J. Bus., 36 (1963), 394-419.
|
[15] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[16] |
X. Mao, G. Yin and C. Yuan,
Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.
doi: 10.1016/j.automatica.2006.09.006. |
[17] |
M. Pinsky and R. Pinsky,
Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab., 21 (1993), 433-452.
doi: 10.1214/aop/1176989410. |
[18] |
G.Samorodnitsky and M.S.Taqqu,
Stable Non-Gaussian Random Processes: Stochastic modeling, Chapman & Hall, New York, 1994. |
[19] |
N. Sandrić,
Long-time behavior of stable-like processes, Stoch. Proc. Appl., 123 (2013), 1276-1300.
doi: 10.1016/j.spa.2012.12.004. |
[20] |
D. R. Smith,
Markov-switching and stochastic volatility diffusion models of short-term interest rates, J. Bus. Econ. Stat., 20 (2002), 183-197.
doi: 10.1198/073500102317351949. |
[21] |
J.Tong and Z.Zhang, Exponential ergodicity of CIR interest rate model with random switching,
Stoch.Dynam., 17 (2017), 1750037, 20pp. |
[22] |
J. T. Wu,
Markov regimes switching with monetary fundamental-based exchange rate model, Asia Pac. Man. Rev., 20 (2015), 79-89.
doi: 10.1016/j.apmrv.2014.12.009. |
[23] |
Z. Zhang, J. Tong and L. Hu,
Long-term behavior of stochastic interest rate models with Markov switching, Insur. Math. Econ., 70 (2016), 320-326.
doi: 10.1016/j.insmatheco.2016.06.017. |
[24] |
N. Zhou and R. Mamon,
An accessible implementation of interest rate models with Markov-switching, Expert Syst. Appl., 39 (2012), 4679-4689.
doi: 10.1016/j.eswa.2011.09.053. |
show all references
References:
[1] |
M.Abramowitz and I.A.Stegun,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley and Sons Incorporated, New York, 1984. |
[2] |
D.Applebaum,
Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2009. |
[3] |
A. Arapostathis, A. Biswas and L. Caffarelli,
The Dirichlet problem for stable like operators and related probabilistic representations, Commun. Part. Diff. Eq., 41 (2016), 1472-1511.
|
[4] |
A.Berman and R.J.Plemmons,
Nonnegative Matrices in the Mathematical Science, SIAM Press classics Series, Philadelphia, 1994. |
[5] |
Z. Chen and J. Wang,
Ergodicity for time-changed symmetric stable processes, Stoch. Proc. Appl., 124 (2014), 2799-2823.
doi: 10.1016/j.spa.2014.04.003. |
[6] |
A. Clauset, C. R. Shalizi and M. E. J. Newman,
Power-law distributions in empirical data, SIAM Rev., 51 (2009), 661-703.
doi: 10.1137/070710111. |
[7] |
J. C. Cox, J. E. Ingersoll and S. A. Ross,
A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242. |
[8] |
N.Fournier,
On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes,
Ann.Inst.Henri Poincaré Probab.Stat., 49 (2013), 138-159. |
[9] |
K. Handa,
Ergodic properties for $α$-CIR models and a class of generalized Fleming-Viot processes, Electron. J. Probab., 19 (2014), 1-25.
|
[10] |
Y. Jiao, C. Ma and S. Scotti,
Alpha-CIR model with branching processes in sovereign interest rate modelling, Financ. Stoch., 21 (2017), 789-813.
doi: 10.1007/s00780-017-0333-7. |
[11] |
R.Khasminskii,
Stochastic Stability of Differential Equations, Springer, Berlin, 2012. |
[12] |
X. Li, A. Gray, D. Jiang and X. Mao,
Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.
doi: 10.1016/j.jmaa.2010.10.053. |
[13] |
Z. Li and C. Ma,
Asymptptic properties of estimators in a stable Cox-Ingersoll-Ross model, Stoch. Proc. Appl., 125 (2015), 3196-3233.
doi: 10.1016/j.spa.2015.03.002. |
[14] |
B. B. Mandelbrot,
The variation of certain speculative prices, J. Bus., 36 (1963), 394-419.
|
[15] |
X. Mao,
Stability of stochastic differential equations with Markovian switching, Stoch. Proc. Appl., 79 (1999), 45-67.
doi: 10.1016/S0304-4149(98)00070-2. |
[16] |
X. Mao, G. Yin and C. Yuan,
Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.
doi: 10.1016/j.automatica.2006.09.006. |
[17] |
M. Pinsky and R. Pinsky,
Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab., 21 (1993), 433-452.
doi: 10.1214/aop/1176989410. |
[18] |
G.Samorodnitsky and M.S.Taqqu,
Stable Non-Gaussian Random Processes: Stochastic modeling, Chapman & Hall, New York, 1994. |
[19] |
N. Sandrić,
Long-time behavior of stable-like processes, Stoch. Proc. Appl., 123 (2013), 1276-1300.
doi: 10.1016/j.spa.2012.12.004. |
[20] |
D. R. Smith,
Markov-switching and stochastic volatility diffusion models of short-term interest rates, J. Bus. Econ. Stat., 20 (2002), 183-197.
doi: 10.1198/073500102317351949. |
[21] |
J.Tong and Z.Zhang, Exponential ergodicity of CIR interest rate model with random switching,
Stoch.Dynam., 17 (2017), 1750037, 20pp. |
[22] |
J. T. Wu,
Markov regimes switching with monetary fundamental-based exchange rate model, Asia Pac. Man. Rev., 20 (2015), 79-89.
doi: 10.1016/j.apmrv.2014.12.009. |
[23] |
Z. Zhang, J. Tong and L. Hu,
Long-term behavior of stochastic interest rate models with Markov switching, Insur. Math. Econ., 70 (2016), 320-326.
doi: 10.1016/j.insmatheco.2016.06.017. |
[24] |
N. Zhou and R. Mamon,
An accessible implementation of interest rate models with Markov-switching, Expert Syst. Appl., 39 (2012), 4679-4689.
doi: 10.1016/j.eswa.2011.09.053. |


[1] |
Vedran Krčadinac, Renata Vlahović Kruc. Quasi-symmetric designs on $ 56 $ points. Advances in Mathematics of Communications, 2021, 15 (4) : 633-646. doi: 10.3934/amc.2020086 |
[2] |
Achyutha Krishnamoorthy, Anu Nuthan Joshua. A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2925-2941. doi: 10.3934/jimo.2020101 |
[3] |
Sawsan Alhowaity, Ernesto Pérez-Chavela, Juan Manuel Sánchez-Cerritos. The curved symmetric $ 2 $– and $ 3 $–center problem on constant negative surfaces. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2941-2963. doi: 10.3934/cpaa.2021090 |
[4] |
Xingwu Chen, Jaume Llibre, Weinian Zhang. Cyclicity of $ (1,3) $-switching FF type equilibria. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6541-6552. doi: 10.3934/dcdsb.2019153 |
[5] |
Shihan Di, Dong Ma, Peibiao Zhao. $ \alpha $-robust portfolio optimization problem under the distribution uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022054 |
[6] |
Alar Leibak. On the number of factorizations of $ t $ mod $ N $ and the probability distribution of Diffie-Hellman secret keys for many users. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021029 |
[7] |
Piotr Bizoń, Dominika Hunik-Kostyra, Dmitry Pelinovsky. Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 1-32. doi: 10.3934/dcds.2020001 |
[8] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[9] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
[10] |
Erchuan Zhang, Lyle Noakes. Riemannian cubics and elastica in the manifold $ \operatorname{SPD}(n) $ of all $ n\times n $ symmetric positive-definite matrices. Journal of Geometric Mechanics, 2019, 11 (2) : 277-299. doi: 10.3934/jgm.2019015 |
[11] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378 |
[12] |
Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2020, 14 (2) : 247-263. doi: 10.3934/amc.2020018 |
[13] |
Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024 |
[14] |
Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1415-1433. doi: 10.3934/jimo.2019009 |
[15] |
Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1285-1300. doi: 10.3934/dcdsb.2021090 |
[16] |
Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184 |
[17] |
Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021122 |
[18] |
Hiroshi Matsuzawa, Mitsunori Nara. Asymptotic behavior of spreading fronts in an anisotropic multi-stable equation on $ \mathit{\boldsymbol{\mathbb{R}^N}} $. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022069 |
[19] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[20] |
Xuerui Gao, Yanqin Bai, Shu-Cherng Fang, Jian Luo, Qian Li. A new hybrid $ l_p $-$ l_2 $ model for sparse solutions with applications to image processing. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021211 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]