
-
Previous Article
Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity
Two codimension-two bifurcations of a second-order difference equation from macroeconomics
School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China |
In this paper we mainly investigate two codimension-two bifurcations of a second-order difference equation from macroeconomics. Applying the center manifold theorem and the normal form analysis, we firstly give the parameter conditions for the generalized flip bifurcation, and prove that the system does not produce a strong resonance. Then, we compute the normal forms to obtain the parameter conditions for the Neimark-Sacker bifurcation, from which we present the conditions for the Chenciner bifurcation. In order to verify the correctness of our results, we also numerically simulate a half stable invariant circle and two invariant circles, one stable and one unstable, arising from the Chenciner bifurcation.
References:
[1] |
D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge University, Cambridge, 1990. |
[2] |
J. Carr, Application of Center Manifold Theory, Springer, New York, 1981.
doi: 10.1007/978-1-4612-5929-9. |
[3] |
S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University, Cambridge, 1994. |
[4] |
S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer, New York, 2005.
doi: 10.1007/978-1-4757-9168-6. |
[5] |
H. A. El-Morshedy,
On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics, J. Differ. Equ. Appl., 17 (2011), 1643-1650.
doi: 10.1080/10236191003730548. |
[6] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors, Springer, New York, 1983. |
[7] |
G. Iooss, Bifurcation of Maps and Applications, Mathematical Studies, 36, North Holland, Amsterdam, 1979. |
[8] |
C. M. Kent and H. Sedaghat,
Global stability and boundedness in $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 10 (2004), 1215-1227.
doi: 10.1080/10236190410001652829. |
[9] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer, New York, 1998.
doi: 10.1007/978-1-4757-2421-9. |
[10] |
S. Li and W. Zhang,
Bifurcations in a second-order difference equation from macroeconomics, J. Differ. Equ. Appl., 14 (2008), 91-104.
doi: 10.1080/10236190701483145. |
[11] |
J. Liu, Z. Yu and W. Zhang,
Invariant curves for a second-order difference equation modelled from macroeconomics, J. Differ. Equ. Appl., 21 (2015), 757-773.
doi: 10.1080/10236198.2015.1040008. |
[12] |
P. A. Samuelson,
Interaction between themultiplier analysis and the principle of acceleration, Rev. Econ. Stat., 21 (1939), 75-78.
doi: 10.2307/1927758. |
[13] |
H. Sedaghat,
A class of nonlinear second-order difference equations from macroeconomics, Nonlinear Anal., 29 (1997), 593-603.
doi: 10.1016/S0362-546X(96)00054-5. |
[14] |
H. Sedaghat,
Regarding the equation $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 8 (2002), 667-671.
doi: 10.1080/10236190290032525. |
[15] |
H. Sedaghat,
Global attractivity, oscillations and chaos in a class of nonlinear, second order difference equations, Cubo, 7 (2005), 89-110.
|
[16] |
I. Sushko, T. Puu and L. Gardini, A Goodwin-type model with cubic investment function, in Business cycle dynamics: models and tools (eds. T. Puu and I. Suchko), Springer, (2006), 299-316.
doi: 10.1007/3-540-32168-3_12. |
[17] |
W. Wang,
Analytic invariant curves of nonlinear second order equation, Acta Mathematica Scientia, 29 (2009), 415-426.
doi: 10.1016/S0252-9602(09)60041-2. |
[18] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003.
doi: 10.1007/b97481. |
show all references
References:
[1] |
D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge University, Cambridge, 1990. |
[2] |
J. Carr, Application of Center Manifold Theory, Springer, New York, 1981.
doi: 10.1007/978-1-4612-5929-9. |
[3] |
S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University, Cambridge, 1994. |
[4] |
S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer, New York, 2005.
doi: 10.1007/978-1-4757-9168-6. |
[5] |
H. A. El-Morshedy,
On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics, J. Differ. Equ. Appl., 17 (2011), 1643-1650.
doi: 10.1080/10236191003730548. |
[6] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors, Springer, New York, 1983. |
[7] |
G. Iooss, Bifurcation of Maps and Applications, Mathematical Studies, 36, North Holland, Amsterdam, 1979. |
[8] |
C. M. Kent and H. Sedaghat,
Global stability and boundedness in $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 10 (2004), 1215-1227.
doi: 10.1080/10236190410001652829. |
[9] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer, New York, 1998.
doi: 10.1007/978-1-4757-2421-9. |
[10] |
S. Li and W. Zhang,
Bifurcations in a second-order difference equation from macroeconomics, J. Differ. Equ. Appl., 14 (2008), 91-104.
doi: 10.1080/10236190701483145. |
[11] |
J. Liu, Z. Yu and W. Zhang,
Invariant curves for a second-order difference equation modelled from macroeconomics, J. Differ. Equ. Appl., 21 (2015), 757-773.
doi: 10.1080/10236198.2015.1040008. |
[12] |
P. A. Samuelson,
Interaction between themultiplier analysis and the principle of acceleration, Rev. Econ. Stat., 21 (1939), 75-78.
doi: 10.2307/1927758. |
[13] |
H. Sedaghat,
A class of nonlinear second-order difference equations from macroeconomics, Nonlinear Anal., 29 (1997), 593-603.
doi: 10.1016/S0362-546X(96)00054-5. |
[14] |
H. Sedaghat,
Regarding the equation $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 8 (2002), 667-671.
doi: 10.1080/10236190290032525. |
[15] |
H. Sedaghat,
Global attractivity, oscillations and chaos in a class of nonlinear, second order difference equations, Cubo, 7 (2005), 89-110.
|
[16] |
I. Sushko, T. Puu and L. Gardini, A Goodwin-type model with cubic investment function, in Business cycle dynamics: models and tools (eds. T. Puu and I. Suchko), Springer, (2006), 299-316.
doi: 10.1007/3-540-32168-3_12. |
[17] |
W. Wang,
Analytic invariant curves of nonlinear second order equation, Acta Mathematica Scientia, 29 (2009), 415-426.
doi: 10.1016/S0252-9602(09)60041-2. |
[18] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003.
doi: 10.1007/b97481. |







[1] |
Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019 |
[2] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[3] |
Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009 |
[4] |
Andrus Giraldo, Bernd Krauskopf, Hinke M. Osinga. Computing connecting orbits to infinity associated with a homoclinic flip bifurcation. Journal of Computational Dynamics, 2020, 7 (2) : 489-510. doi: 10.3934/jcd.2020020 |
[5] |
Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1 |
[6] |
Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683 |
[7] |
Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127 |
[8] |
Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237 |
[9] |
Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249 |
[10] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[11] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[12] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[13] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[14] |
Andrus Giraldo, Neil G. R. Broderick, Bernd Krauskopf. Chaotic switching in driven-dissipative Bose-Hubbard dimers: When a flip bifurcation meets a T-point in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4023-4075. doi: 10.3934/dcdsb.2021217 |
[15] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941 |
[16] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[17] |
Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747 |
[18] |
Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107 |
[19] |
Joaquín Delgado, Eymard Hernández–López, Lucía Ivonne Hernández–Martínez. Bautin bifurcation in a minimal model of immunoediting. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1397-1414. doi: 10.3934/dcdsb.2019233 |
[20] |
Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]