We consider discrete potentials as controls in systems of finite difference equations which are discretizations of a 1-D Schrödinger equation. We give examples of palindromic potentials which have corresponding steerable initial-terminal pairs which are not mirror-symmetric. For a set of palindromic potentials, we show that the corresponding steerable pairs that satisfy a localization property are mirror-symmetric. We express the initial and terminal states in these pairs explicitly as scalar multiples of vector-valued functions of a parameter in the control.
Citation: |
[1] |
G. D. Akrivis and V. A. Dougalis, Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28.
![]() ![]() |
[2] |
K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.
doi: 10.1016/j.matpur.2005.02.005.![]() ![]() ![]() |
[3] |
D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989.
![]() |
[4] |
U. Boscain, J.-P. Gauthier, F. Rossi and M. Sigalotti, Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.
doi: 10.1007/s00220-014-2195-6.![]() ![]() ![]() |
[5] |
T. Boykin and G. Klimeck, The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.
doi: 10.1088/0143-0807/25/4/006.![]() ![]() ![]() |
[6] |
M. Buttiker and R. Landauer, Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.
doi: 10.1007/BFb0108208.![]() ![]() |
[7] |
R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993.
![]() |
[8] |
T. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.
doi: 10.1137/0724025.![]() ![]() ![]() |
[9] |
K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.
doi: 10.1016/j.jfa.2005.03.021.![]() ![]() ![]() |
[10] |
A. Goldberg, H. Schey and J. Schwartz, Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.
doi: 10.1119/1.1973991.![]() ![]() |
[11] |
A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.
doi: 10.1007/BF02099468.![]() ![]() ![]() |
[12] |
A. Kacar and O. Terzioglu, Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.
doi: 10.1002/num.20192.![]() ![]() ![]() |
[13] |
K. Kime, Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10.
![]() ![]() |
[14] |
I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.
doi: 10.1016/0022-247X(90)90330-I.![]() ![]() ![]() |
[15] |
J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.
doi: 10.1137/1030001.![]() ![]() ![]() |
[16] |
M. Morancey and V. Nersesyan, Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.
doi: 10.1016/j.matpur.2014.04.002.![]() ![]() ![]() |
[17] |
A. Nissen, G. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.
doi: 10.1007/s10915-012-9628-1.![]() ![]() ![]() |
[18] |
K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007.
![]() |
[19] |
D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.
doi: 10.1002/sapm1973523189.![]() ![]() ![]() |
[20] |
L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968.
![]() |
[21] |
E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.
doi: 10.1137/S0036144503432862.![]() ![]() ![]() |