\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations

  • * Corresponding author: Katherine A. Kime

    * Corresponding author: Katherine A. Kime
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We consider discrete potentials as controls in systems of finite difference equations which are discretizations of a 1-D Schrödinger equation. We give examples of palindromic potentials which have corresponding steerable initial-terminal pairs which are not mirror-symmetric. For a set of palindromic potentials, we show that the corresponding steerable pairs that satisfy a localization property are mirror-symmetric. We express the initial and terminal states in these pairs explicitly as scalar multiples of vector-valued functions of a parameter in the control.

    Mathematics Subject Classification: Primary: 93B03, 93B40, 93C20; Secondary: 81Q05, 81Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Example 1. $\alpha$-Localized, Mirror-Symmetric

    Figure 2.  Example 2. Not Localized, Not Mirror-Symmetric

    Figure 3.  Example 3. Localized with Equal Degree of Restriction Equal to 1, Not $\alpha$-Localized, Not Mirror-Symmetric

  • [1] G. D. Akrivis and V. A. Dougalis, Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28. 
    [2] K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.  doi: 10.1016/j.matpur.2005.02.005.
    [3] D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989.
    [4] U. BoscainJ.-P. GauthierF. Rossi and M. Sigalotti, Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.  doi: 10.1007/s00220-014-2195-6.
    [5] T. Boykin and G. Klimeck, The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.  doi: 10.1088/0143-0807/25/4/006.
    [6] M. Buttiker and R. Landauer, Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.  doi: 10.1007/BFb0108208.
    [7] R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993.
    [8] T. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.  doi: 10.1137/0724025.
    [9] K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.  doi: 10.1016/j.jfa.2005.03.021.
    [10] A. GoldbergH. Schey and J. Schwartz, Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.  doi: 10.1119/1.1973991.
    [11] A. HofO. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.  doi: 10.1007/BF02099468.
    [12] A. Kacar and O. Terzioglu, Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.  doi: 10.1002/num.20192.
    [13] K. Kime, Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10. 
    [14] I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.  doi: 10.1016/0022-247X(90)90330-I.
    [15] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.
    [16] M. Morancey and V. Nersesyan, Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.  doi: 10.1016/j.matpur.2014.04.002.
    [17] A. NissenG. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.  doi: 10.1007/s10915-012-9628-1.
    [18] K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007.
    [19] D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.  doi: 10.1002/sapm1973523189.
    [20] L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968.
    [21] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1149) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return