We focus on the long time behavior of complex networks of reaction-diffusion systems. We prove the existence of the global attractor and the $L^{∞}$-bound for networks of $n$ reaction-diffusion systems that belong to a class that generalizes the FitzHugh-Nagumo reaction-diffusion equations.
Citation: |
[1] |
B. Ambrosio and J.-P. Françcoise, Propagation of Bursting Oscillations, Phil. Trans. R. Soc. A., 367 (2009), 4863-4875.
doi: 10.1098/rsta.2009.0143.![]() ![]() ![]() |
[2] |
B. Ambrosio and M. A. Aziz-Alaoui, Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type, Comput. Math. Appl., 64 (2012), 934-943.
doi: 10.1016/j.camwa.2012.01.056.![]() ![]() |
[3] |
B. Ambrosio and M. A. Aziz-Alaoui, Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems, Acta Biotheoretica, 64 (2016), 311-325.
doi: 10.1007/s10441-016-9294-z.![]() ![]() |
[4] |
B. Ambrosio, M. A. Aziz-Alaoui and V. L. E. Phan, Large time behavior and synchronization for a complex network system of reaction-diffusion systems, preprint, arXiv: 1504.07763.
![]() |
[5] |
A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.
![]() ![]() |
[6] |
E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.
doi: 10.1137/0135001.![]() ![]() ![]() |
[7] |
G. B. Ermentrout and D. H. Terman,
Mathematical Foundations of Neurosciences Springer, 2010.
![]() ![]() |
[8] |
R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6.![]() ![]() |
[9] |
C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.
![]() ![]() |
[10] |
D. Henry,
Geometric Theory of Semilinear Parabolic Equations Springer, 1981.
![]() ![]() |
[11] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.
![]() |
[12] |
E. M. Izhikevich Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting MIT Press, Cambridge, MA, 2007.
![]() ![]() |
[13] |
C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system, Transactions of the AMS, 286 (1984), 431-469.
doi: 10.1090/S0002-9947-1984-0760971-6.![]() ![]() ![]() |
[14] |
N. Kopell and D. Ruelle, Bounds on complexity in reaction-diffusion systems, SIAM J. Appl. Math, 46 (1986), 68-80.
doi: 10.1137/0146007.![]() ![]() ![]() |
[15] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva,
Linear and Quasilinear Equations of Parabolic Type Providence, Rhode Island, Transl. of Math. Monographs 23,1968.
![]() ![]() |
[16] |
J. L. Lions,
Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires Dunod, Paris, 1969.
![]() ![]() |
[17] |
M. Marion, Finite Dimensionnal Attractors associated with Partly Dissipative Reaction-Diffusion Systems, SIAM, J. Math. Anal., 20 (1989), 816-844.
doi: 10.1137/0520057.![]() ![]() ![]() |
[18] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE., 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.![]() ![]() |
[19] |
J. Rauch and J. Smoller, Qualitative theory of the fitzhugh nagumo equations, Advances in Mathematics, 27 (1978), 12-44.
doi: 10.1016/0001-8708(78)90075-0.![]() ![]() ![]() |
[20] |
J. Robinson,
Infinite-Dimensional Dynamical Systems Cambridge University Press, 2001.
![]() ![]() |
[21] |
F. Rothe,
Global Solutions of Reaction-Diffusion Systems Springer-Verlag, 1984.
![]() ![]() |
[22] |
J. Smoller,
Shock Waves and Reaction-Diffusion Equations Springer, 1994.
![]() ![]() |
[23] |
R. Temam,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics Springer, 1988.
![]() ![]() |