January  2019, 24(1): 351-361. doi: 10.3934/dcdsb.2018086

A locking free Reissner-Mindlin element with weak Galerkin rotations

1. 

Department of Mathematics, Jilin University, Changchun, China

2. 

Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

3. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

* Corresponding author: Lin Mu

Received  October 2016 Revised  October 2017 Published  March 2018

Fund Project: The research of second author was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under award number ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This research of third author was supported in part by National Science Foundation Grant DMS-1620016.

A locking free finite element method is developed for the Reissner-Mindlin equations in their primary form. In this method, the transverse displacement is approximated by continuous piecewise polynomials of degree $k+1$ and the rotation is approximated by weak Galerkin elements of degree $k$ for $k≥1$. A uniform convergence in thickness of the plate is established for this finite element approximation. The numerical examples demonstrate locking free of the method.

Citation: Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086
References:
[1]

D. ArnoldF. Brezzi and D. Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), 25-45.  doi: 10.1007/s10915-004-4134-8.  Google Scholar

[2]

D. ArnoldF. BrezziR. Falk and D. Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3660-3671.  doi: 10.1016/j.cma.2006.10.023.  Google Scholar

[3]

D. Arnold and R. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290.  doi: 10.1137/0726074.  Google Scholar

[4]

D. N. Arnold and X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model, Adv. in Comp. Math., 7 (1997), 337-360.  doi: 10.1023/A:1018907205385.  Google Scholar

[5]

S. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comput., 73 (2004), 1067-1087.   Google Scholar

[6]

F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), 151-158.  doi: 10.1090/S0025-5718-1986-0842127-7.  Google Scholar

[7]

F. BrezziK. Bathe and M. Fortin, Mixed interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 28 (1989), 1787-1801.  doi: 10.1002/nme.1620280806.  Google Scholar

[8]

G. BrezziM. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 1 (1991), 125-151.  doi: 10.1142/S0218202591000083.  Google Scholar

[9]

D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 8 (1998), 407-430.  doi: 10.1142/S0218202598000172.  Google Scholar

[10]

R. Duran and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), 561-573.  doi: 10.1090/S0025-5718-1992-1106965-0.  Google Scholar

[11]

R. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69 (2000), 911-928.   Google Scholar

[12]

P. HansboD. Heintz and M. Larson, A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Comput. Methods Appl. Mech. Engrg., 200 (2011), 638-648.  doi: 10.1016/j.cma.2010.09.009.  Google Scholar

[13]

C. Lovadina and D. Marini, Nonconforming locking-free finite elements for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3448-3460.  doi: 10.1016/j.cma.2005.06.025.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.   Google Scholar

[16]

R. Pierre, Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem, Math Comp., 51 (1988), 15-25.  doi: 10.1090/S0025-5718-1988-0942141-9.  Google Scholar

[17]

J. Wang and X. Ye, A superconvergent finite element scheme for the reissner-mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.   Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math, 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386.  doi: 10.1023/A:1016693613626.  Google Scholar

[21]

X. Ye, A Rectangular Element for the Reissner-Mindlin Plate, Numer. Method for PDE, 16 (2000), 184-193.  doi: 10.1002/(SICI)1098-2426(200003)16:2<184::AID-NUM3>3.0.CO;2-B.  Google Scholar

show all references

References:
[1]

D. ArnoldF. Brezzi and D. Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), 25-45.  doi: 10.1007/s10915-004-4134-8.  Google Scholar

[2]

D. ArnoldF. BrezziR. Falk and D. Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3660-3671.  doi: 10.1016/j.cma.2006.10.023.  Google Scholar

[3]

D. Arnold and R. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290.  doi: 10.1137/0726074.  Google Scholar

[4]

D. N. Arnold and X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model, Adv. in Comp. Math., 7 (1997), 337-360.  doi: 10.1023/A:1018907205385.  Google Scholar

[5]

S. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comput., 73 (2004), 1067-1087.   Google Scholar

[6]

F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), 151-158.  doi: 10.1090/S0025-5718-1986-0842127-7.  Google Scholar

[7]

F. BrezziK. Bathe and M. Fortin, Mixed interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 28 (1989), 1787-1801.  doi: 10.1002/nme.1620280806.  Google Scholar

[8]

G. BrezziM. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 1 (1991), 125-151.  doi: 10.1142/S0218202591000083.  Google Scholar

[9]

D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 8 (1998), 407-430.  doi: 10.1142/S0218202598000172.  Google Scholar

[10]

R. Duran and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), 561-573.  doi: 10.1090/S0025-5718-1992-1106965-0.  Google Scholar

[11]

R. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69 (2000), 911-928.   Google Scholar

[12]

P. HansboD. Heintz and M. Larson, A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Comput. Methods Appl. Mech. Engrg., 200 (2011), 638-648.  doi: 10.1016/j.cma.2010.09.009.  Google Scholar

[13]

C. Lovadina and D. Marini, Nonconforming locking-free finite elements for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3448-3460.  doi: 10.1016/j.cma.2005.06.025.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58.  doi: 10.1016/j.cam.2015.02.001.  Google Scholar

[15]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.   Google Scholar

[16]

R. Pierre, Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem, Math Comp., 51 (1988), 15-25.  doi: 10.1090/S0025-5718-1988-0942141-9.  Google Scholar

[17]

J. Wang and X. Ye, A superconvergent finite element scheme for the reissner-mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.   Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math, 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386.  doi: 10.1023/A:1016693613626.  Google Scholar

[21]

X. Ye, A Rectangular Element for the Reissner-Mindlin Plate, Numer. Method for PDE, 16 (2000), 184-193.  doi: 10.1002/(SICI)1098-2426(200003)16:2<184::AID-NUM3>3.0.CO;2-B.  Google Scholar

Table 1.  Example 1. Error profile and convergence rate on triangular mesh.
h $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
t=1
1/4 2.2928e-1 8.2826e-1 1.1156e-1 9.4025e-2
1/8 7.2951e-2 1.65 6.1481e-1 0.43 1.4546e-2 2.94 1.7212e-2 2.45
1/16 1.8952e-2 1.94 3.6061e-1 0.77 1.8584e-3 2.97 2.4738e-3 2.80
1/32 4.7756e-3 1.99 1.8925e-1 0.93 2.4951e-4 2.90 3.3612e-4 2.88
1/64 1.1961e-3 2.00 9.5844e-2 0.98 3.8498e-5 2.70 4.8047e-5 2.81
t = 1e − 3
1/4 2.3633e-1 2.3639e-1 2.7175e-1 2.9153e-1
1/8 6.8597e-2 1.78 6.8675e-2 1.78 8.7506e-2 1.63 1.1448e-1 1.35
1/16 1.9470e-2 1.82 1.9542e-2 1.81 2.4404e-2 1.84 3.4550e-2 1.73
1/32 5.0660e-3 1.94 5.1359e-3 1.93 6.2578e-3 1.96 9.0799e-3 1.93
1/64 1.2169e-3 2.06 1.2876e-3 2.00 1.5154e-3 2.05 2.2184e-3 2.03
t = 1e − 6
1/4 2.3636e-1 2.3636e-1 2.7183e-1 2.9161e-1
1/8 6.8703e-2 1.78 6.8703e-2 1.78 8.7716e-2 1.63 1.1467e-1 1.35
1/16 1.9610e-2 1.81 1.9610e-2 1.81 2.4634e-2 1.83 3.4772e-2 1.72
1/32 5.0329e-3 1.96 5.0329e-3 1.96 4.4698e-3 2.46 7.7775e-3 2.16
1/64 1.2582e-3 2.00 1.2582e-3 2.00 1.1175e-3 2.00 1.9444e-3 2.00
h $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
t=1
1/4 2.2928e-1 8.2826e-1 1.1156e-1 9.4025e-2
1/8 7.2951e-2 1.65 6.1481e-1 0.43 1.4546e-2 2.94 1.7212e-2 2.45
1/16 1.8952e-2 1.94 3.6061e-1 0.77 1.8584e-3 2.97 2.4738e-3 2.80
1/32 4.7756e-3 1.99 1.8925e-1 0.93 2.4951e-4 2.90 3.3612e-4 2.88
1/64 1.1961e-3 2.00 9.5844e-2 0.98 3.8498e-5 2.70 4.8047e-5 2.81
t = 1e − 3
1/4 2.3633e-1 2.3639e-1 2.7175e-1 2.9153e-1
1/8 6.8597e-2 1.78 6.8675e-2 1.78 8.7506e-2 1.63 1.1448e-1 1.35
1/16 1.9470e-2 1.82 1.9542e-2 1.81 2.4404e-2 1.84 3.4550e-2 1.73
1/32 5.0660e-3 1.94 5.1359e-3 1.93 6.2578e-3 1.96 9.0799e-3 1.93
1/64 1.2169e-3 2.06 1.2876e-3 2.00 1.5154e-3 2.05 2.2184e-3 2.03
t = 1e − 6
1/4 2.3636e-1 2.3636e-1 2.7183e-1 2.9161e-1
1/8 6.8703e-2 1.78 6.8703e-2 1.78 8.7716e-2 1.63 1.1467e-1 1.35
1/16 1.9610e-2 1.81 1.9610e-2 1.81 2.4634e-2 1.83 3.4772e-2 1.72
1/32 5.0329e-3 1.96 5.0329e-3 1.96 4.4698e-3 2.46 7.7775e-3 2.16
1/64 1.2582e-3 2.00 1.2582e-3 2.00 1.1175e-3 2.00 1.9444e-3 2.00
Table 2.  Example 2. Error profile and convergence rate on triangular mesh.
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
$t=1$
1/4 7.1054e-2 4.3252e-1 1.3468e-3 1.9340e-3
1/81.7700e-22.012.2528e-10.943.0173e-42.164.7669e-42.02
1/164.4178e-32.001.1386e-10.987.3026e-52.051.1882e-42.00
1/321.1038e-32.005.7085e-21.001.8108e-52.012.9695e-52.00
1/642.7591e-42.002.8562e-21.004.5181e-62.007.4241e-62.00
$t=1e-3$
1/47.8909e-27.8920e-21.5185e-22.1876e-2
1/81.9680e-22.001.9692e-22.003.4940e-32.125.3275e-32.04
1/164.9063e-32.004.9182e-32.008.6948e-42.011.3334e-32.00
1/321.2254e-32.001.2373e-31.992.1650e-42.013.3216e-42.01
1/643.0652e-42.003.1821e-41.965.2591e-52.048.0763e-52.04
$t=1e-6$
1/47.8904e-27.8904e-21.5196e-22.1889e-2
1/81.9658e-22.011.9658e-22.013.5363e-32.105.3726e-32.03
1/164.8250e-32.034.8250e-32.031.0325e-31.781.5119e-31.83
1/321.2063e-32.001.2063e-32.002.5812e-42.003.7798e-42.00
1/643.0156e-42.003.0156e-42.006.4531e-52.009.4494e-52.00
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$ Rate $\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$ Rate $\frac{\| \xi_h\|}{\|w_I\|}$ Rate $\frac{||| \xi_h|||_w}{||| w_I|||_w}$ Rate
$t=1$
1/4 7.1054e-2 4.3252e-1 1.3468e-3 1.9340e-3
1/81.7700e-22.012.2528e-10.943.0173e-42.164.7669e-42.02
1/164.4178e-32.001.1386e-10.987.3026e-52.051.1882e-42.00
1/321.1038e-32.005.7085e-21.001.8108e-52.012.9695e-52.00
1/642.7591e-42.002.8562e-21.004.5181e-62.007.4241e-62.00
$t=1e-3$
1/47.8909e-27.8920e-21.5185e-22.1876e-2
1/81.9680e-22.001.9692e-22.003.4940e-32.125.3275e-32.04
1/164.9063e-32.004.9182e-32.008.6948e-42.011.3334e-32.00
1/321.2254e-32.001.2373e-31.992.1650e-42.013.3216e-42.01
1/643.0652e-42.003.1821e-41.965.2591e-52.048.0763e-52.04
$t=1e-6$
1/47.8904e-27.8904e-21.5196e-22.1889e-2
1/81.9658e-22.011.9658e-22.013.5363e-32.105.3726e-32.03
1/164.8250e-32.034.8250e-32.031.0325e-31.781.5119e-31.83
1/321.2063e-32.001.2063e-32.002.5812e-42.003.7798e-42.00
1/643.0156e-42.003.0156e-42.006.4531e-52.009.4494e-52.00
Table 3.  Example 3. Error profile and convergence rate on triangular mesh.
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$Rate$\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$Rate $\frac{\| \xi_h\|}{\|w_I\|}$Rate$\frac{||| \xi_h|||_w}{||| w_I|||_w}$Rate
$t=1$
1/42.8817e-18.7886e-13.4967e-22.8229e-2
1/86.4481e-22.165.8311e-10.594.9549e-32.824.7686e-32.57
1/161.5738e-22.033.2520e-10.847.6558e-42.697.2651e-42.71
1/323.9112e-32.011.6784e-10.951.4638e-42.391.1930e-42.60
1/649.7633e-42.008.4614e-20.993.3163e-52.142.3538e-52.34
$t=1e-3$
1/41.9791e-11.9802e-12.8790e-12.8340e-01
1/85.5770e-21.835.5851e-21.831.0222e-11.491.0240e-011.47
1/161.5321e-21.861.5393e-21.862.8291e-21.852.8723e-021.83
1/323.8890e-31.983.9578e-31.967.2000e-31.977.3429e-031.97
1/649.1919e-42.089.8893e-42.001.7371e-32.051.7727e-032.05
$t=1e-6$
1/41.9793e-11.9793e-12.8800e-12.8350e-01
1/85.5887e-21.825.5887e-21.821.0241e-11.491.0258e-011.47
1/161.5435e-21.861.5435e-21.862.8442e-21.852.8873e-021.83
1/323.3377e-32.213.3377e-32.214.4595e-32.674.9441e-032.55
1/648.3442e-42.008.3442e-42.001.1149e-32.001.2360e-032.00
$h$ $\frac{\|{\boldsymbol{\rm{e}}}_0\|}{\|{\boldsymbol{\rm{Q}}}_0\mathit{\boldsymbol{\theta}}\|}$Rate$\frac{|||{\boldsymbol{\rm{e}}}_h|||_{\theta}}{|||{\boldsymbol{\rm{Q}}}_h\mathit{\boldsymbol{\theta}}|||}$Rate $\frac{\| \xi_h\|}{\|w_I\|}$Rate$\frac{||| \xi_h|||_w}{||| w_I|||_w}$Rate
$t=1$
1/42.8817e-18.7886e-13.4967e-22.8229e-2
1/86.4481e-22.165.8311e-10.594.9549e-32.824.7686e-32.57
1/161.5738e-22.033.2520e-10.847.6558e-42.697.2651e-42.71
1/323.9112e-32.011.6784e-10.951.4638e-42.391.1930e-42.60
1/649.7633e-42.008.4614e-20.993.3163e-52.142.3538e-52.34
$t=1e-3$
1/41.9791e-11.9802e-12.8790e-12.8340e-01
1/85.5770e-21.835.5851e-21.831.0222e-11.491.0240e-011.47
1/161.5321e-21.861.5393e-21.862.8291e-21.852.8723e-021.83
1/323.8890e-31.983.9578e-31.967.2000e-31.977.3429e-031.97
1/649.1919e-42.089.8893e-42.001.7371e-32.051.7727e-032.05
$t=1e-6$
1/41.9793e-11.9793e-12.8800e-12.8350e-01
1/85.5887e-21.825.5887e-21.821.0241e-11.491.0258e-011.47
1/161.5435e-21.861.5435e-21.862.8442e-21.852.8873e-021.83
1/323.3377e-32.213.3377e-32.214.4595e-32.674.9441e-032.55
1/648.3442e-42.008.3442e-42.001.1149e-32.001.2360e-032.00
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[3]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[4]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[5]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[8]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[9]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[10]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[11]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[12]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[13]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[14]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[15]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[16]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[17]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[18]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[19]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[20]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (124)
  • HTML views (619)
  • Cited by (0)

Other articles
by authors

[Back to Top]