\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation

Stanislavova supported in part by NSF-DMS # 1516245.
Abstract Full Text(HTML) Figure(11) / Table(1) Related Papers Cited by
  • In this paper, we study numerically the existence and stability of some special solutions of the nonlinear beam equation: $u_{tt}+u_{xxxx}+u-|u|^{p-1} u = 0$ when $p = 3$ and $p = 5$. For the standing wave solutions $u(x, t) = e^{iω t}\varphi_{ω}(x)$ we numerically illustrate their existence using variational approach. Our numerics illustrate the existence of both ground states and excited states. We also compute numerically the threshold value $ω^*$ which separates stable and unstable ground states. Next, we study the existence and linear stability of periodic traveling wave solutions $u(x, t) = φ_c(x+ct)$. We present numerical illustration of the theoretically predicted threshold value of the speed $c$ which separates the stable and unstable waves.

    Mathematics Subject Classification: Primary: 34K28, 34L16, 34D20, 34L16, 35B35, 35C07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Two standing waves are shown for $p = 3$, $\omega = 0.5$ and $L = 20\pi$. The dashed line is the standing wave derived from a local minimizer of (8) and the solid line is derived from a global one.

    Figure 2.  Existence of standing waves. $\varphi_{\omega}$ versus position when $p = 3$, (a) for different values of $\omega$ for $L = 50\pi$ (b) for different values of $L$ for $w = 0.8$.

    Figure 3.  Orbital stability of standing wave solutions. $M(\omega)$ versus $\omega$ when $L = 50\pi$, (a) $p = 3$, the graph is concave up for $\omega\in (0.64, 1)$, (b) $p = 5$, the graph is concave up for $\omega\in(0.82, 1)$.

    Figure 4.  (a) Snap-shots from the simulation of a periodic standing wave for $p = 5$, $\omega = -0.95$, $L = 30\pi$ when $t = 0$ (blue), $t = 5$ (red), $t = 22$ (green), $t = 28$ (pink), $t = 39$ (purple), $t = 44$ (black). (b) the space-time evolution of the periodic standing wave.

    Figure 5.  Space-time evolution of the standing wave for $L = 30\pi$ (a) $p = 3$, $\omega = -0.55$ (b) $p = 5$, $\omega = -0.65$

    Figure 6.  (a) Snap-shots from the simulation of a periodic traveling wave for $c = -1, 32$, $L = 30\pi$ when $t = 0$ (blue), $t = 1$ (red) and $t = 50$ (green) (b) the space-time evolution of the periodic traveling wave.

    Figure 7.  Existence of traveling waves. $\phi_{c}$ versus position for different values of $c$ when $L = 100\pi$ and $p = 3$. $c = 0$ corresponds to the steady state solution.

    Figure 8.  The first and the second minimum eigenvalues of $\mathcal{H}$ as L varies on $[5\pi, 31\pi]$ for $c = 0$, $c = 1$ and $c = 1.3$.

    Figure 9.  $c^*$ versus $L$. In this figure, $L$ varies on $[5\pi, 200\pi]$. The numerical computations show us as $L$ increases $c^*$ decreases.

    Figure 10.  (a) Snap-shots from the simulation of a periodic traveling wave for $c = -1, 38$, $L = 30\pi$ when $t = 0$ (blue), $t = 1$ (red) and $t = 50$ (green) (b) the space-time evolution of the periodic traveling wave.

    Figure 11.  (a) Snap-shots from the simulation of a periodic standing wave for $p = 3$, $\omega = -0.85$, $L = 30\pi$ when $t = 0$ (blue), $t = 5$ (red), $t = 17$ (green), $t = 24$ (pink), $t = 37$ (purple), $t = 49$ (cyan), $t = 56$ (black). (b) the space-time evolution of the periodic standing wave.

    Table 1.  $\omega^*$ values as $L$ varies.

    $p$ $\omega^*$ $L$
    $3$ $0.715\pm0.005$ $\pi$
    $0.655\pm0.005$ $\in[2\pi, 50\pi]$
    $0.6375\pm0.0025$ $100\pi$
    $5$ $0.865\pm0.005$ $\pi$
    $0.825\pm0.005$ $\in[2\pi, 50\pi]$
    $0.8175\pm0.0025$ $100\pi$
     | Show Table
    DownLoad: CSV
  • [1] A. R. ChampneysP. J. McKenna and P. A. Zegeling, Solitary waves in nonlinear beam equations: stability, fission and fusion, Nonlinear Dynam, 21 (2000), 31-53.  doi: 10.1023/A:1008302207311.
    [2] L. Chen, Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations, Acta Math. Appl. Sinica, 15 (1999), 54-64.  doi: 10.1007/BF02677396.
    [3] Y. Chen and P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differential Equations, 136 (1997), 325-355.  doi: 10.1006/jdeq.1996.3155.
    [4] S. HakkaevM. Stanislavova and A. Stefanov, Orbital Stability for periodic standing waves of the Klein-Gordon-Zakharov and the Beam equation, ZAMP-Zeitschrift fuer Angewandte Mathematik und Physik,, 64 (2013), 265-282.  doi: 10.1007/s00033-012-0228-6.
    [5] P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations, Nonlinear Anal, 73 (2010), 367-373.  doi: 10.1016/j.na.2010.03.025.
    [6] S. Levandosky, Stability and instability of fourth order solitary waves, J. Dynamics and Differential Equations, 10 (1998), 151-188.  doi: 10.1023/A:1022644629950.
    [7] P. J. McKenna and W. Walter, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715.  doi: 10.1137/0150041.
    [8] J. SmollerNonlinear Ordinary Differential Equations, CRC Press, Boca Raton, FL, 1993. 
    [9] M. Stanislavova and A. Stefanov, Linear stability analysis for traveling waves of second order in time PDE's, Nonlinearity, 25 (2012), 2625-2654.  doi: 10.1088/0951-7715/25/9/2625.
    [10] M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D: Nonlinear Phenomena, 262 (2013), 1-13.  doi: 10.1016/j.physd.2013.06.014.
  • 加载中

Figures(11)

Tables(1)

SHARE

Article Metrics

HTML views(852) PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return