
-
Previous Article
On a coupled SDE-PDE system modeling acid-mediated tumor invasion
- DCDS-B Home
- This Issue
-
Next Article
Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law
Periodic orbits of perturbed non-axially symmetric potentials in 1:1:1 and 1:1:2 resonances
1. | Departament d'enginyeries, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), C. de la Laura, 13, 08500 Vic, Barcelona, Spain |
2. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Barcelona, Spain |
3. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal |
$ \mathbb{R}^6$ |
$H = 1/2 (p_x^2+p_y^2+p_z^2)+\frac{1}{2} (ω_1^2 x^2+ω_2^2 y^2+ ω_3^2 z^2)+ \varepsilon(a z^3 + z (b x^2 +c y^2)),$ |
$ a,b,c∈\mathbb{R}$ |
$ c\ne 0$ |
$ \varepsilon$ |
$ ω_1$ |
$ ω_2$ |
$ ω_3$ |
$ x$ |
$ y$ |
$ z$ |
$ |\varepsilon|>0$ |
$ H$ |
$ ω_1 = ω_2 = ω_3/2$ |
$ ω_1 = ω_2 = ω_3$ |
$ a,b,c$ |
References:
[1] |
B. Barbanis,
Escape regions of a quartic potential, Celest. Mech. Dyn. Astron., 48 (1990), 57-77.
doi: 10.1007/BF00050676. |
[2] |
A. Buică and J. Llibre,
Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128 (2004), 7-22.
doi: 10.1016/j.bulsci.2003.09.002. |
[3] |
N. D. Caranicolas,
A map for a group of resonant cases in quartic galactic hamiltonian, J. Astrophys. Astron., 22 (2001), 309-319.
doi: 10.1007/BF02702274. |
[4] |
N. D. Caranicolas,
Orbits in global and local galactic potentials, Astron. Astrophys. Trans., 23 (2004), 241-252.
doi: 10.1080/10556790410001704668. |
[5] |
N. D. Caranicolas and G. I. Karanis,
Motion in a potential creating a weak bar structure, Astron. Astrophys., 342 (1999), 389-394.
|
[6] |
N. D. Caranicolas and N. D. Zotos,
Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits, Nonlinear Dyn., 69 (2012), 1795-1805.
doi: 10.1007/s11071-012-0386-2. |
[7] |
G. Contopoulos,
Orbits in highly perturbed dynamical systems. Ⅱ. Stability of periodic orbits, Astron. J., 75 (1970), 108-130.
doi: 10.1086/110949. |
[8] |
A. Elipe, B. Miller and M. Vallejo,
Bifurcations in a non-symmetric cubic potential, Astron. Atrophys., 300 (1995), 722-725.
|
[9] |
S. Ferrer, M. Lara, J.F. San Juan, A. Viatola and P. Yanguas,
The Hénon and Heiles problem in three dimensions. Ⅰ. Periodic orbits near the origin, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 8 (1998), 1199-1213.
doi: 10.1142/S0218127498000942. |
[10] |
S. Ferrer, H. Hanffmann, J. Palacián and P. Yanguas,
On perturbed oscillators in 1-1-1: Resonance: the case of axially symmetric cubic potentials, J. Geom. Phys., 40 (2002), 320-369.
doi: 10.1016/S0393-0440(01)00041-9. |
[11] |
A. Giorgilli and L. Galgani,
Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Celest. Mech., 17 (1978), 267-280.
doi: 10.1007/BF01232832. |
[12] |
H. Hanffmann and B. Sommer,
A degenerate bifurcation in the Hénon-Heiles family, Celest. Mech. Dyn. Astron., 81 (2001), 249-261.
doi: 10.1023/A:1013252302027. |
[13] |
H. Hanffmann and J. C. van der Meer,
On the Hamiltonian Hopf bifurcation in the 3D Hénon-Heiles family, J. Dyn. Differ. Equ., 14 (2002), 675-695.
doi: 10.1023/A:1016343317119. |
[14] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[15] |
G. I. Karanis and L. Ch. Vozikis,
Fast detection of chaotic behavior in galactic potentials, Astron. Nachr., 329 (2008), 403-412.
doi: 10.1002/asna.200710835. |
[16] |
V. Lanchares, A. I. Pascual, J. Palacián, P. Yanguas and J. P. Salas,
Perturbed ion traps: A generalization of the three-dimensional Heénon-Heiles problem, Chaos, 12 (2002), 87-99.
doi: 10.1063/1.1449957. |
[17] |
J. Llibre and L. Jiménez-Lara, Periodic orbits and non-integrability of Hénon-Heiles systems,
J. Phys. A: Math. Theor., 44 (2011), 205103, 14 pp. |
[18] |
N. G. Lloyd,
Degree Theory, Cambridge Tracts in Mathematics, Cambridge Univesity Press, Cambridge, New York-Melbourne, 1978. |
[19] |
A. Maciejewski, W. Radzki and S. Rybicki,
Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems, J. Dyn. Diff. Equ., 17 (2005), 475-488.
doi: 10.1007/s10884-005-4577-0. |
[20] |
F. Verhulst,
Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, 1996. |
[21] |
E. E. Zotos,
Application of new dynamical spectra of orbits in Hamiltonian systems, Nonlinear Dyn., 69 (2012), 2041-2063.
doi: 10.1007/s11071-012-0406-2. |
[22] |
E. E. Zotos,
The fast norm vector indicator (FNVI) method: A new dynamical parameter for detecting order and chaos in Hamiltonian systems, Nonlinear Dyn., 70 (2012), 951-978.
doi: 10.1007/s11071-012-0504-1. |
show all references
References:
[1] |
B. Barbanis,
Escape regions of a quartic potential, Celest. Mech. Dyn. Astron., 48 (1990), 57-77.
doi: 10.1007/BF00050676. |
[2] |
A. Buică and J. Llibre,
Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128 (2004), 7-22.
doi: 10.1016/j.bulsci.2003.09.002. |
[3] |
N. D. Caranicolas,
A map for a group of resonant cases in quartic galactic hamiltonian, J. Astrophys. Astron., 22 (2001), 309-319.
doi: 10.1007/BF02702274. |
[4] |
N. D. Caranicolas,
Orbits in global and local galactic potentials, Astron. Astrophys. Trans., 23 (2004), 241-252.
doi: 10.1080/10556790410001704668. |
[5] |
N. D. Caranicolas and G. I. Karanis,
Motion in a potential creating a weak bar structure, Astron. Astrophys., 342 (1999), 389-394.
|
[6] |
N. D. Caranicolas and N. D. Zotos,
Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits, Nonlinear Dyn., 69 (2012), 1795-1805.
doi: 10.1007/s11071-012-0386-2. |
[7] |
G. Contopoulos,
Orbits in highly perturbed dynamical systems. Ⅱ. Stability of periodic orbits, Astron. J., 75 (1970), 108-130.
doi: 10.1086/110949. |
[8] |
A. Elipe, B. Miller and M. Vallejo,
Bifurcations in a non-symmetric cubic potential, Astron. Atrophys., 300 (1995), 722-725.
|
[9] |
S. Ferrer, M. Lara, J.F. San Juan, A. Viatola and P. Yanguas,
The Hénon and Heiles problem in three dimensions. Ⅰ. Periodic orbits near the origin, Int. J. Bifurcat. Chaos Appl. Sci. Engrg., 8 (1998), 1199-1213.
doi: 10.1142/S0218127498000942. |
[10] |
S. Ferrer, H. Hanffmann, J. Palacián and P. Yanguas,
On perturbed oscillators in 1-1-1: Resonance: the case of axially symmetric cubic potentials, J. Geom. Phys., 40 (2002), 320-369.
doi: 10.1016/S0393-0440(01)00041-9. |
[11] |
A. Giorgilli and L. Galgani,
Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Celest. Mech., 17 (1978), 267-280.
doi: 10.1007/BF01232832. |
[12] |
H. Hanffmann and B. Sommer,
A degenerate bifurcation in the Hénon-Heiles family, Celest. Mech. Dyn. Astron., 81 (2001), 249-261.
doi: 10.1023/A:1013252302027. |
[13] |
H. Hanffmann and J. C. van der Meer,
On the Hamiltonian Hopf bifurcation in the 3D Hénon-Heiles family, J. Dyn. Differ. Equ., 14 (2002), 675-695.
doi: 10.1023/A:1016343317119. |
[14] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[15] |
G. I. Karanis and L. Ch. Vozikis,
Fast detection of chaotic behavior in galactic potentials, Astron. Nachr., 329 (2008), 403-412.
doi: 10.1002/asna.200710835. |
[16] |
V. Lanchares, A. I. Pascual, J. Palacián, P. Yanguas and J. P. Salas,
Perturbed ion traps: A generalization of the three-dimensional Heénon-Heiles problem, Chaos, 12 (2002), 87-99.
doi: 10.1063/1.1449957. |
[17] |
J. Llibre and L. Jiménez-Lara, Periodic orbits and non-integrability of Hénon-Heiles systems,
J. Phys. A: Math. Theor., 44 (2011), 205103, 14 pp. |
[18] |
N. G. Lloyd,
Degree Theory, Cambridge Tracts in Mathematics, Cambridge Univesity Press, Cambridge, New York-Melbourne, 1978. |
[19] |
A. Maciejewski, W. Radzki and S. Rybicki,
Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems, J. Dyn. Diff. Equ., 17 (2005), 475-488.
doi: 10.1007/s10884-005-4577-0. |
[20] |
F. Verhulst,
Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, 1996. |
[21] |
E. E. Zotos,
Application of new dynamical spectra of orbits in Hamiltonian systems, Nonlinear Dyn., 69 (2012), 2041-2063.
doi: 10.1007/s11071-012-0406-2. |
[22] |
E. E. Zotos,
The fast norm vector indicator (FNVI) method: A new dynamical parameter for detecting order and chaos in Hamiltonian systems, Nonlinear Dyn., 70 (2012), 951-978.
doi: 10.1007/s11071-012-0504-1. |


[1] |
Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587 |
[2] |
Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243 |
[3] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[4] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[5] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[6] |
Morimichi Kawasaki, Ryuma Orita. Computation of annular capacity by Hamiltonian Floer theory of non-contractible periodic trajectories. Journal of Modern Dynamics, 2017, 11: 313-339. doi: 10.3934/jmd.2017013 |
[7] |
Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 |
[8] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[9] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[10] |
Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75 |
[11] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[12] |
Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems and Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003 |
[13] |
Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050 |
[14] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[15] |
Ruizhi Gong, Yuren Shi, Deng-Shan Wang. Linear stability of exact solutions for the generalized Kaup-Boussinesq equation and their dynamical evolutions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3355-3378. doi: 10.3934/dcds.2022018 |
[16] |
Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized. Mathematical Biosciences & Engineering, 2008, 5 (4) : 803-812. doi: 10.3934/mbe.2008.5.803 |
[17] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[18] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[19] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[20] |
Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]