• Previous Article
    A comparative study on nonlocal diffusion operators related to the fractional Laplacian
  • DCDS-B Home
  • This Issue
  • Next Article
    Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation
January  2019, 24(1): 211-229. doi: 10.3934/dcdsb.2018102

Global regularity results for the climate model with fractional dissipation

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China

2. 

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

3. 

School of Mathematics and computation Sciences, Anqing Normal University, Anqing 246133, China

* Corresponding author: Jiahong Wu

Received  January 2017 Revised  January 2018 Published  March 2018

Fund Project: B. Dong was partially supported by the NNSFC (No. 11271019, No. 11571240). J. Wu was supported by NSF grant DMS 1614246 and the AT & T Foundation at Oklahoma State University. H. Zhang was as partially supported by the Research Fund of SMS at Anhui University.

This paper studies the global well-posedness problem on a tropical climate model with fractional dissipation. This system allows us to simultaneously examine a family of equations characterized by the fractional dissipative terms $ (-Δ)^{\mathit{\alpha }}u$ in the equation of the barotropic mode $ u$ and $ (-Δ)^β v$ in the equation of the first baroclinic mode $ v$. We establish the global existence and regularity of the solutions when the total fractional power is 2, namely $ {\mathit{\alpha }}+ β = 2$.

Citation: Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 211-229. doi: 10.3934/dcdsb.2018102
References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407.   Google Scholar

[2]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, 2011.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.  Google Scholar

[4]

B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, submitted for publication. Google Scholar

[5]

D. FriersonA. Majda and O. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Comm. Math. Sci., 2 (2004), 591-626.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[6]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[7]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. American Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[8]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[9]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220 (2016), 983-1001.  doi: 10.1007/s00205-015-0946-y.  Google Scholar

[10]

J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495-4516.  doi: 10.3934/dcds.2016.36.4495.  Google Scholar

[11]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[12]

C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics, Science Press, Beijing, China, 2012 (in Chinese). Google Scholar

[13]

T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.  Google Scholar

[14]

Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307-321.  doi: 10.1016/j.jmaa.2016.08.053.  Google Scholar

show all references

References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407.   Google Scholar

[2]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, 2011.  Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.  Google Scholar

[4]

B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, submitted for publication. Google Scholar

[5]

D. FriersonA. Majda and O. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Comm. Math. Sci., 2 (2004), 591-626.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[6]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.  Google Scholar

[7]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. American Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[8]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[9]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220 (2016), 983-1001.  doi: 10.1007/s00205-015-0946-y.  Google Scholar

[10]

J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495-4516.  doi: 10.3934/dcds.2016.36.4495.  Google Scholar

[11]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[12]

C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics, Science Press, Beijing, China, 2012 (in Chinese). Google Scholar

[13]

T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.  Google Scholar

[14]

Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307-321.  doi: 10.1016/j.jmaa.2016.08.053.  Google Scholar

[1]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[2]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[3]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[7]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[8]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[9]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[13]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[14]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[17]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[18]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[19]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[20]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (193)
  • HTML views (559)
  • Cited by (3)

Other articles
by authors

[Back to Top]