The paper aims to explore the long-term behaviour of stochastic two-step methods applied to a class of second order stochastic differential equations. In particular, the treatment focuses on preserving long-term statistics related to the dynamics of a linear stochastic damped oscillator whose velocity, in the stationary regime, is distributed as a Gaussian variable and uncorrelated with the position. By computing the solution of a very simple matrix equality, we a-priori determine the long-term statistics characterizing the numerical dynamics and analyze the behaviour of a selection of methods.
Citation: |
Figure 1. Patterns over $\eta$ of $|\widetilde{\sigma}_{x,EM}^2-\sigma_x^2|$ (continuous line), $|\widetilde{\sigma}_{v,EM}^2-\sigma_v^2|$ (dashed line) and $|\widetilde{\mu}_{EM}-\mu|$ (dashed-dotted line), for $g = 1$, $\Delta t = 10^{-2}$, $\varepsilon = 1$ for the Eulero-Maruyama method (16) applied to the stochastic problem (4).
Figure 2. Patterns over $\eta$ of $|\widetilde{\sigma}_{x,TRAP}^2-\sigma_x^2|$ (continuous line), $|\widetilde{\sigma}_{v,TRAP}^2-\sigma_v^2|$ (dashed line, almost overlapping the continuous line) and $|\widetilde{\mu}_{TRAP}-\mu|$ (dashed-dotted line), for $g = 1$, $\Delta t = 10^{-2}$, $\varepsilon = 1$ for the trapezoidal method (17) applied to the stochastic problem (4).
Figure 3. Patterns over $\eta$ of $|\widetilde{\sigma}_{x,AM}^2-\sigma_x^2|$ (continuous line), $|\widetilde{\sigma}_{v,AM}^2-\sigma_v^2|$ (dashed line) and $|\widetilde{\mu}_{AM}-\mu|$ (dashed-dotted line), for $g = 1$, $\Delta t = 10^{-2}$, $\varepsilon = 1$ for the Adams-Moulton method (19) applied to the stocastic problem (4).
Figure 4. Patterns over $\eta$ of $|\widetilde{\sigma}_{x,BDF}^2-\sigma_x^2|$ (continuous line), $|\widetilde{\sigma}_{v,BDF}^2-\sigma_v^2|$ (dashed line) and $|\widetilde{\mu}_{BDF}-\mu|$ (dashed-dotted line), for $g = 1$, $\Delta t = 10^{-2}$, $\varepsilon = 1$ for the BDF method (21) applied to the stochastic problem (4).
E. Buckwar and R. D'Ambrosio, Exponential mean-square stability properties of stochastic multistep methods, submitted.
![]() |
|
E. Buckwar
, R. Horvath-Bokor
and R. Winkler
, Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations, BIT Numer. Math., 46 (2006)
, 261-282.
doi: 10.1007/s10543-006-0060-5.![]() ![]() ![]() |
|
P. M. Burrage
and K. Burrage
, Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise, Numer. Algor., 65 (2014)
, 519-532.
doi: 10.1007/s11075-013-9796-6.![]() ![]() ![]() |
|
P. M. Burrage
and K. Burrage
, Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise, J. Comput. Appl. Math., 236 (2012)
, 3920-3930.
doi: 10.1016/j.cam.2012.03.007.![]() ![]() ![]() |
|
K. Burrage
, I. Lenane
and G. Lythe
, Numerical methods for second-order stochastic differential equations, SIAM J. Sci. Comput., 29 (2007)
, 245-264.
doi: 10.1137/050646032.![]() ![]() ![]() |
|
K. Burrage
and G. Lythe
, Accurate stationary densities with partitioned numerical methods for stochastic differential equations, SIAM J. Numer. Anal., 47 (2009)
, 1601-1618.
doi: 10.1137/060677148.![]() ![]() ![]() |
|
D. Conte, R. D'Ambrosio and B. Paternoster, On the stability of ϑ-methods for stochastic Volterra integral equations, Discr. Cont. Dyn. Sys. - B, accepted for publication, (2017).
![]() |
|
P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962.
![]() ![]() |
|
D. J. Higham
, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001)
, 525-546.
doi: 10.1137/S0036144500378302.![]() ![]() ![]() |
|
P. E. Kloeden and E. Platen, The Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992.
![]() ![]() |
|
A. H. Strömmen
and D. J. Melbö Higham
, Numerical simulation of a linear stochastic oscillator with additive noise, Appl. Numer. Math., 51 (2004)
, 89-99.
doi: 10.1016/j.apnum.2004.02.003.![]() ![]() ![]() |
|
G. Vilmart
, Weak second order multi-revolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise, SIAM J. Sci. Comput., 36 (2014)
, 1770-1796.
doi: 10.1137/130935331.![]() ![]() ![]() |
Patterns over
Patterns over
Patterns over
Patterns over