[1]
|
G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid. Mech., 30 (1967), 197-207.
doi: 10.1017/S0022112067001375.
|
[2]
|
P. Bochev, C. Dohrmann and M. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44 (2006), 82-101.
doi: 10.1137/S0036142905444482.
|
[3]
|
Y. Boubendir and S. Tlupova, Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals, SIAM J. Sci. Comput., 35 (2013), B82-B106.
doi: 10.1137/110838376.
|
[4]
|
A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259.
doi: 10.1016/0045-7825(82)90071-8.
|
[5]
|
M. C. Cai, M. Mu and J. C. Xu, Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math., 233 (2009), 346-355.
doi: 10.1016/j.cam.2009.07.029.
|
[6]
|
M. C. Cai and M. Mu, A multilevel decoupled method for a mixed Stokes/Darcy model, J. Comput. Appl. Math., 236 (2012), 2452-2465.
doi: 10.1016/j.cam.2011.12.003.
|
[7]
|
M. C. Cai, M. Mu and J. C. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), 3325-3338.
doi: 10.1137/080721868.
|
[8]
|
Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang and W. Zhao, Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47 (2010), 4239-4256.
doi: 10.1137/080731542.
|
[9]
|
Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Comm. Math. Sci., 8 (2010), 1-25.
doi: 10.4310/CMS.2010.v8.n1.a2.
|
[10]
|
Y. Cao, M. Gunzburger, X. He and X. Wang, Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition, Numer. Math., 117 (2011), 601-629.
doi: 10.1007/s00211-011-0361-8.
|
[11]
|
Y. Cao, M. Gunzburger, X. He and X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comput., 83 (2014), 1617-1644.
doi: 10.1090/S0025-5718-2014-02779-8.
|
[12]
|
Y. Cao, Y. Chu, X. He and M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition,
Abstr. Appl. Anal. , 2013 (2013), Art. ID 136483, 10 pp.
|
[13]
|
W. Chen, M. Gunzburger, F. Hua and X. M. Wang, A parallel robin-robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), 1064-1084.
doi: 10.1137/080740556.
|
[14]
|
M. Discacciati,
Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, Ph. D. dissertation, École Polytechnique Fédérale de Lausanne, 2004.
|
[15]
|
M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Visual Sci., 6 (2004), 93-103.
doi: 10.1007/s00791-003-0113-0.
|
[16]
|
M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 57-74.
doi: 10.1016/S0168-9274(02)00125-3.
|
[17]
|
M. Discaaaiati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246-1268.
doi: 10.1137/06065091X.
|
[18]
|
M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling Stokes and Darcy equations, In Numerical Analysis and Advanced Applications -Enumath 2001 (eds. F. Brezzi et al), Springer, Milan, (2003), 3-20.
|
[19]
|
V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47 (2009), 2052-2089.
doi: 10.1137/070686081.
|
[20]
|
R. Glowinski, T. Pan and J. Periaux, A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving grid bodies: Ⅰ. Case where the rigid body motions are known a priori, C. R. Acad. Sci. Paris Ser. Ⅰ Math., 324 (1997), 361-369.
doi: 10.1016/S0764-4442(99)80376-0.
|
[21]
|
N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations, Transp. Porous Media, 64 (2006), 1573-1634.
doi: 10.1007/s11242-005-1457-3.
|
[22]
|
X. He, J. Li, Y. Lin and J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), S264-S290.
doi: 10.1137/140965776.
|
[23]
|
F. Hecht, FreeFEM++, J. Numer. Math., 20 (2012), 251-265.
|
[24]
|
Y. R. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model, Appl. Math. Letters, 57 (2016), 90-96.
doi: 10.1016/j.aml.2016.01.007.
|
[25]
|
F. Hua, Modeling, Analysis and Simulation of Stokes-Darcy System with Beavers-Joseph Interface Condition, Ph. D. dissertation, The Florida State University, 2009.
|
[26]
|
P. Z. Huang, X. L. Feng and H. Y. Su, Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokese quations, Nonlinear Anal. Real World Appl., 14 (2013), 1171-1181.
doi: 10.1016/j.nonrwa.2012.09.008.
|
[27]
|
T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: Ⅴ. Circumventing the babuska-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99.
doi: 10.1016/0045-7825(86)90025-3.
|
[28]
|
H. Jia, H. Jia and Y. Huang, A modified two-grid decoupling method for the mixed Navier-Stokes/Darcy Model, Comput. Math. Appl., 72 (2016), 1142-1152.
doi: 10.1016/j.camwa.2016.06.033.
|
[29]
|
B. Jiang, A parallel domain decomposition method for coupling of surface and groundwarter flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 947-957.
doi: 10.1016/j.cma.2008.11.001.
|
[30]
|
F. D. Kong and X. C. Cai, A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry, SIAM J. Sci. Comput., 38 (2016), C73-C95.
doi: 10.1137/15M1010567.
|
[31]
|
F. D. Kong and X. C. Cai, Scalability study of an implicit solver for coupled fluid-structure interaction problems on unstructured meshes in 3D, Int. J. High Perform. Comput. Appl., 32 (2018), 207-219.
doi: 10.1177/1094342016646437.
|
[32]
|
F. D. Kong and X. C. Cai, A scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D." Journal of Computational Physics, J. Comput. Phys., 340 (2017), 498-518.
doi: 10.1016/j.jcp.2017.03.043.
|
[33]
|
W. J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), 2195-2218.
doi: 10.1137/S0036142901392766.
|
[34]
|
R. Li, J. Li, Z. X. Chen and Y. L. Gao, A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem, J. Comput. Appl. Math., 292 (2016), 92-104.
doi: 10.1016/j.cam.2015.06.014.
|
[35]
|
J. Li and Y. N. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214 (2008), 58-65.
doi: 10.1016/j.cam.2007.02.015.
|
[36]
|
J. L. Lions and E. Magenes,
Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, Heidelberg, 1972.
|
[37]
|
A. Marquez, S. Meddahi and F. J. Sayas, A decoupled preconditioning technique for a mixed Stokes-Darcy model, J. Sci. Comput., 57 (2013), 174-192.
doi: 10.1007/s10915-013-9700-5.
|
[38]
|
M. Mu and X. H. Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput., 79 (2010), 707-731.
|
[39]
|
M. Mu and J. C. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), 1801-1813.
doi: 10.1137/050637820.
|
[40]
|
K. Nafa, Equal order approximations enriched with bubbles for coupled Stokes-Darcy problem, J. Comput. Appl. Math., 270 (2014), 275-282.
doi: 10.1016/j.cam.2014.01.010.
|
[41]
|
K. Nafa, Stability of some low-order approximations for Stokes problem, Internat. J. Numer. Methods Fluids, 56 (2008), 753-765.
doi: 10.1002/fld.1553.
|
[42]
|
G. Pacquaut, J. Bruchon, N. Moulin and S. Drapier, Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows, Internat. J. Numer. Methods Fluids, 69 (2012), 459-480.
doi: 10.1002/fld.2569.
|
[43]
|
H. Rui and R. Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2692-2699.
doi: 10.1016/j.cma.2009.03.011.
|
[44]
|
P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), 93-101.
doi: 10.1002/sapm197150293.
|
[45]
|
L. Shan, H. B. Zheng and W. J. Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Eqns., 29 (2013), 549-583.
doi: 10.1002/num.21720.
|
[46]
|
L. Shan and H. B. Zheng, Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 51 (2013), 813-839.
doi: 10.1137/110828095.
|
[47]
|
T. Zhang and J. Y. Yuan, Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations, Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 849-865.
doi: 10.3934/dcdsb.2014.19.849.
|
[48]
|
H. B. Zheng, Y. R. Hou and F. Shi, A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow, SIAM J. Sci. Comput., 32 (2010), 1346-1360.
doi: 10.1137/090771508.
|
[49]
|
L. Y. Zuo and Y. R. Hou, A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition, Numer. Methods Partial Differ. Eqns., 30 (2014), 1066-1082.
doi: 10.1002/num.21860.
|