# American Institute of Mathematical Sciences

January  2019, 24(1): 387-402. doi: 10.3934/dcdsb.2018109

## Two-grid finite element method for the stabilization of mixed Stokes-Darcy model

 1 College of Science, Donghua University, Shanghai 201620, China 2 Department of Mathematics, East China Normal University, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai 200241, China 3 College of Science, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China 4 Department of Mathematics, University of Houston, Houston, TX 77024, USA 5 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: Feng Shi (shi.feng@hit.edu.cn)

Received  April 2017 Revised  August 2017 Published  January 2019 Early access  March 2018

Fund Project: The first author is supported by NSFC (Grant Nos. 11501097 and 11471071). The second author is partially supported by NSFC (Grant Nos. 11201369 and 11771337). The third author is partially subsidized by Basic Research Program of Shenzhen (Grant No. JCYJ20150831112754988).

A two-grid discretization for the stabilized finite element method for mixed Stokes-Darcy problem is proposed and analyzed. The lowest equal-order velocity-pressure pairs are used due to their simplicity and attractive computational properties, such as much simpler data structures and less computer memory for meshes and algebraic system, easier interpolations, and convenient usages of many existing preconditioners and fast solvers in simulations, which make these pairs a much popular choice in engineering practice; see e.g., [4,27]. The decoupling methods are adopted for solving coupled systems based on the significant features that decoupling methods can allow us to solve the submodel problems independently by using most appropriate numerical techniques and preconditioners, and also to reduce substantial coding tasks. The main idea in this paper is that, on the coarse grid, we solve a stabilized finite element scheme for coupled Stokes-Darcy problem; then on the fine grid, we apply the coarse grid approximation to the interface conditions, and solve two independent subproblems: one is the stabilized finite element method for Stokes subproblem, and another one is the Darcy subproblem. Optimal error estimates are derived, and several numerical experiments are carried out to demonstrate the accuracy and efficiency of the two-grid stabilized finite element algorithm.

Citation: Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109
##### References:
 [1] G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid. Mech., 30 (1967), 197-207.  doi: 10.1017/S0022112067001375. [2] P. Bochev, C. Dohrmann and M. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44 (2006), 82-101.  doi: 10.1137/S0036142905444482. [3] Y. Boubendir and S. Tlupova, Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals, SIAM J. Sci. Comput., 35 (2013), B82-B106.  doi: 10.1137/110838376. [4] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259.  doi: 10.1016/0045-7825(82)90071-8. [5] M. C. Cai, M. Mu and J. C. Xu, Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math., 233 (2009), 346-355.  doi: 10.1016/j.cam.2009.07.029. [6] M. C. Cai and M. Mu, A multilevel decoupled method for a mixed Stokes/Darcy model, J. Comput. Appl. Math., 236 (2012), 2452-2465.  doi: 10.1016/j.cam.2011.12.003. [7] M. C. Cai, M. Mu and J. C. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), 3325-3338.  doi: 10.1137/080721868. [8] Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang and W. Zhao, Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47 (2010), 4239-4256.  doi: 10.1137/080731542. [9] Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Comm. Math. Sci., 8 (2010), 1-25.  doi: 10.4310/CMS.2010.v8.n1.a2. [10] Y. Cao, M. Gunzburger, X. He and X. Wang, Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition, Numer. Math., 117 (2011), 601-629.  doi: 10.1007/s00211-011-0361-8. [11] Y. Cao, M. Gunzburger, X. He and X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comput., 83 (2014), 1617-1644.  doi: 10.1090/S0025-5718-2014-02779-8. [12] Y. Cao, Y. Chu, X. He and M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition, Abstr. Appl. Anal. , 2013 (2013), Art. ID 136483, 10 pp. [13] W. Chen, M. Gunzburger, F. Hua and X. M. Wang, A parallel robin-robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), 1064-1084.  doi: 10.1137/080740556. [14] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, Ph. D. dissertation, École Polytechnique Fédérale de Lausanne, 2004. [15] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Visual Sci., 6 (2004), 93-103.  doi: 10.1007/s00791-003-0113-0. [16] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 57-74.  doi: 10.1016/S0168-9274(02)00125-3. [17] M. Discaaaiati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246-1268.  doi: 10.1137/06065091X. [18] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling Stokes and Darcy equations, In Numerical Analysis and Advanced Applications -Enumath 2001 (eds. F. Brezzi et al), Springer, Milan, (2003), 3-20. [19] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47 (2009), 2052-2089.  doi: 10.1137/070686081. [20] R. Glowinski, T. Pan and J. Periaux, A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving grid bodies: Ⅰ. Case where the rigid body motions are known a priori, C. R. Acad. Sci. Paris Ser. Ⅰ Math., 324 (1997), 361-369.  doi: 10.1016/S0764-4442(99)80376-0. [21] N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations, Transp. Porous Media, 64 (2006), 1573-1634.  doi: 10.1007/s11242-005-1457-3. [22] X. He, J. Li, Y. Lin and J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), S264-S290.  doi: 10.1137/140965776. [23] F. Hecht, FreeFEM++, J. Numer. Math., 20 (2012), 251-265. [24] Y. R. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model, Appl. Math. Letters, 57 (2016), 90-96.  doi: 10.1016/j.aml.2016.01.007. [25] F. Hua, Modeling, Analysis and Simulation of Stokes-Darcy System with Beavers-Joseph Interface Condition, Ph. D. dissertation, The Florida State University, 2009. [26] P. Z. Huang, X. L. Feng and H. Y. Su, Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokese quations, Nonlinear Anal. Real World Appl., 14 (2013), 1171-1181.  doi: 10.1016/j.nonrwa.2012.09.008. [27] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: Ⅴ. Circumventing the babuska-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99.  doi: 10.1016/0045-7825(86)90025-3. [28] H. Jia, H. Jia and Y. Huang, A modified two-grid decoupling method for the mixed Navier-Stokes/Darcy Model, Comput. Math. Appl., 72 (2016), 1142-1152.  doi: 10.1016/j.camwa.2016.06.033. [29] B. Jiang, A parallel domain decomposition method for coupling of surface and groundwarter flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 947-957.  doi: 10.1016/j.cma.2008.11.001. [30] F. D. Kong and X. C. Cai, A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry, SIAM J. Sci. Comput., 38 (2016), C73-C95.  doi: 10.1137/15M1010567. [31] F. D. Kong and X. C. Cai, Scalability study of an implicit solver for coupled fluid-structure interaction problems on unstructured meshes in 3D, Int. J. High Perform. Comput. Appl., 32 (2018), 207-219.  doi: 10.1177/1094342016646437. [32] F. D. Kong and X. C. Cai, A scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D." Journal of Computational Physics, J. Comput. Phys., 340 (2017), 498-518.  doi: 10.1016/j.jcp.2017.03.043. [33] W. J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), 2195-2218.  doi: 10.1137/S0036142901392766. [34] R. Li, J. Li, Z. X. Chen and Y. L. Gao, A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem, J. Comput. Appl. Math., 292 (2016), 92-104.  doi: 10.1016/j.cam.2015.06.014. [35] J. Li and Y. N. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214 (2008), 58-65.  doi: 10.1016/j.cam.2007.02.015. [36] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, Heidelberg, 1972. [37] A. Marquez, S. Meddahi and F. J. Sayas, A decoupled preconditioning technique for a mixed Stokes-Darcy model, J. Sci. Comput., 57 (2013), 174-192.  doi: 10.1007/s10915-013-9700-5. [38] M. Mu and X. H. Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput., 79 (2010), 707-731. [39] M. Mu and J. C. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), 1801-1813.  doi: 10.1137/050637820. [40] K. Nafa, Equal order approximations enriched with bubbles for coupled Stokes-Darcy problem, J. Comput. Appl. Math., 270 (2014), 275-282.  doi: 10.1016/j.cam.2014.01.010. [41] K. Nafa, Stability of some low-order approximations for Stokes problem, Internat. J. Numer. Methods Fluids, 56 (2008), 753-765.  doi: 10.1002/fld.1553. [42] G. Pacquaut, J. Bruchon, N. Moulin and S. Drapier, Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows, Internat. J. Numer. Methods Fluids, 69 (2012), 459-480.  doi: 10.1002/fld.2569. [43] H. Rui and R. Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2692-2699.  doi: 10.1016/j.cma.2009.03.011. [44] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), 93-101.  doi: 10.1002/sapm197150293. [45] L. Shan, H. B. Zheng and W. J. Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Eqns., 29 (2013), 549-583.  doi: 10.1002/num.21720. [46] L. Shan and H. B. Zheng, Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 51 (2013), 813-839.  doi: 10.1137/110828095. [47] T. Zhang and J. Y. Yuan, Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations, Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 849-865.  doi: 10.3934/dcdsb.2014.19.849. [48] H. B. Zheng, Y. R. Hou and F. Shi, A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow, SIAM J. Sci. Comput., 32 (2010), 1346-1360.  doi: 10.1137/090771508. [49] L. Y. Zuo and Y. R. Hou, A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition, Numer. Methods Partial Differ. Eqns., 30 (2014), 1066-1082.  doi: 10.1002/num.21860.

show all references

##### References:
 [1] G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid. Mech., 30 (1967), 197-207.  doi: 10.1017/S0022112067001375. [2] P. Bochev, C. Dohrmann and M. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44 (2006), 82-101.  doi: 10.1137/S0036142905444482. [3] Y. Boubendir and S. Tlupova, Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals, SIAM J. Sci. Comput., 35 (2013), B82-B106.  doi: 10.1137/110838376. [4] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259.  doi: 10.1016/0045-7825(82)90071-8. [5] M. C. Cai, M. Mu and J. C. Xu, Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math., 233 (2009), 346-355.  doi: 10.1016/j.cam.2009.07.029. [6] M. C. Cai and M. Mu, A multilevel decoupled method for a mixed Stokes/Darcy model, J. Comput. Appl. Math., 236 (2012), 2452-2465.  doi: 10.1016/j.cam.2011.12.003. [7] M. C. Cai, M. Mu and J. C. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), 3325-3338.  doi: 10.1137/080721868. [8] Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang and W. Zhao, Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47 (2010), 4239-4256.  doi: 10.1137/080731542. [9] Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Comm. Math. Sci., 8 (2010), 1-25.  doi: 10.4310/CMS.2010.v8.n1.a2. [10] Y. Cao, M. Gunzburger, X. He and X. Wang, Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition, Numer. Math., 117 (2011), 601-629.  doi: 10.1007/s00211-011-0361-8. [11] Y. Cao, M. Gunzburger, X. He and X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comput., 83 (2014), 1617-1644.  doi: 10.1090/S0025-5718-2014-02779-8. [12] Y. Cao, Y. Chu, X. He and M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition, Abstr. Appl. Anal. , 2013 (2013), Art. ID 136483, 10 pp. [13] W. Chen, M. Gunzburger, F. Hua and X. M. Wang, A parallel robin-robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), 1064-1084.  doi: 10.1137/080740556. [14] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows, Ph. D. dissertation, École Polytechnique Fédérale de Lausanne, 2004. [15] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Visual Sci., 6 (2004), 93-103.  doi: 10.1007/s00791-003-0113-0. [16] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 57-74.  doi: 10.1016/S0168-9274(02)00125-3. [17] M. Discaaaiati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246-1268.  doi: 10.1137/06065091X. [18] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling Stokes and Darcy equations, In Numerical Analysis and Advanced Applications -Enumath 2001 (eds. F. Brezzi et al), Springer, Milan, (2003), 3-20. [19] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47 (2009), 2052-2089.  doi: 10.1137/070686081. [20] R. Glowinski, T. Pan and J. Periaux, A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving grid bodies: Ⅰ. Case where the rigid body motions are known a priori, C. R. Acad. Sci. Paris Ser. Ⅰ Math., 324 (1997), 361-369.  doi: 10.1016/S0764-4442(99)80376-0. [21] N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations, Transp. Porous Media, 64 (2006), 1573-1634.  doi: 10.1007/s11242-005-1457-3. [22] X. He, J. Li, Y. Lin and J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), S264-S290.  doi: 10.1137/140965776. [23] F. Hecht, FreeFEM++, J. Numer. Math., 20 (2012), 251-265. [24] Y. R. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model, Appl. Math. Letters, 57 (2016), 90-96.  doi: 10.1016/j.aml.2016.01.007. [25] F. Hua, Modeling, Analysis and Simulation of Stokes-Darcy System with Beavers-Joseph Interface Condition, Ph. D. dissertation, The Florida State University, 2009. [26] P. Z. Huang, X. L. Feng and H. Y. Su, Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokese quations, Nonlinear Anal. Real World Appl., 14 (2013), 1171-1181.  doi: 10.1016/j.nonrwa.2012.09.008. [27] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: Ⅴ. Circumventing the babuska-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99.  doi: 10.1016/0045-7825(86)90025-3. [28] H. Jia, H. Jia and Y. Huang, A modified two-grid decoupling method for the mixed Navier-Stokes/Darcy Model, Comput. Math. Appl., 72 (2016), 1142-1152.  doi: 10.1016/j.camwa.2016.06.033. [29] B. Jiang, A parallel domain decomposition method for coupling of surface and groundwarter flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 947-957.  doi: 10.1016/j.cma.2008.11.001. [30] F. D. Kong and X. C. Cai, A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry, SIAM J. Sci. Comput., 38 (2016), C73-C95.  doi: 10.1137/15M1010567. [31] F. D. Kong and X. C. Cai, Scalability study of an implicit solver for coupled fluid-structure interaction problems on unstructured meshes in 3D, Int. J. High Perform. Comput. Appl., 32 (2018), 207-219.  doi: 10.1177/1094342016646437. [32] F. D. Kong and X. C. Cai, A scalable nonlinear fluid-structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D." Journal of Computational Physics, J. Comput. Phys., 340 (2017), 498-518.  doi: 10.1016/j.jcp.2017.03.043. [33] W. J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2002), 2195-2218.  doi: 10.1137/S0036142901392766. [34] R. Li, J. Li, Z. X. Chen and Y. L. Gao, A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem, J. Comput. Appl. Math., 292 (2016), 92-104.  doi: 10.1016/j.cam.2015.06.014. [35] J. Li and Y. N. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214 (2008), 58-65.  doi: 10.1016/j.cam.2007.02.015. [36] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, Heidelberg, 1972. [37] A. Marquez, S. Meddahi and F. J. Sayas, A decoupled preconditioning technique for a mixed Stokes-Darcy model, J. Sci. Comput., 57 (2013), 174-192.  doi: 10.1007/s10915-013-9700-5. [38] M. Mu and X. H. Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comput., 79 (2010), 707-731. [39] M. Mu and J. C. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45 (2007), 1801-1813.  doi: 10.1137/050637820. [40] K. Nafa, Equal order approximations enriched with bubbles for coupled Stokes-Darcy problem, J. Comput. Appl. Math., 270 (2014), 275-282.  doi: 10.1016/j.cam.2014.01.010. [41] K. Nafa, Stability of some low-order approximations for Stokes problem, Internat. J. Numer. Methods Fluids, 56 (2008), 753-765.  doi: 10.1002/fld.1553. [42] G. Pacquaut, J. Bruchon, N. Moulin and S. Drapier, Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows, Internat. J. Numer. Methods Fluids, 69 (2012), 459-480.  doi: 10.1002/fld.2569. [43] H. Rui and R. Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2692-2699.  doi: 10.1016/j.cma.2009.03.011. [44] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50 (1971), 93-101.  doi: 10.1002/sapm197150293. [45] L. Shan, H. B. Zheng and W. J. Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differ. Eqns., 29 (2013), 549-583.  doi: 10.1002/num.21720. [46] L. Shan and H. B. Zheng, Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 51 (2013), 813-839.  doi: 10.1137/110828095. [47] T. Zhang and J. Y. Yuan, Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations, Discrete Contin. Dyn. Syst.-Ser. B, 19 (2014), 849-865.  doi: 10.3934/dcdsb.2014.19.849. [48] H. B. Zheng, Y. R. Hou and F. Shi, A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow, SIAM J. Sci. Comput., 32 (2010), 1346-1360.  doi: 10.1137/090771508. [49] L. Y. Zuo and Y. R. Hou, A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition, Numer. Methods Partial Differ. Eqns., 30 (2014), 1066-1082.  doi: 10.1002/num.21860.
The pressure line by TGM (Left), StbTGM (Middle) and TGM-$(P_1, P_1, P_1)$ (Right)
Streamlines for the numerical velocity by TGM (Left), StbTGM (Middle) and TGM-$(P_1, P_1, P_1)$ (Right)
The velocity streamlines of the backward facing step flow with two interface conditions: Case 1 (top), Case 2 (bottom)
The convergence performance and CPU time by SFEM
 h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac14$ 3.666e-1 - 2.051e-1 - 9.850e-1 - 0.101 $\frac{1}{16}$ 9.850e-2 0.948 5.103e-2 1.004 9.534e-2 1.684 3.547 $\frac{1}{64}$ 2.476e-2 0.996 1.280e-2 0.998 3.858e-2 0.653 214.951
 h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac14$ 3.666e-1 - 2.051e-1 - 9.850e-1 - 0.101 $\frac{1}{16}$ 9.850e-2 0.948 5.103e-2 1.004 9.534e-2 1.684 3.547 $\frac{1}{64}$ 2.476e-2 0.996 1.280e-2 0.998 3.858e-2 0.653 214.951
The convergence performance and CPU time by TGM
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac14$ $\frac{1}{16}$ 9.577e-2 - 5.109e-2 - 1.741e-1 - 0.181 $\frac{1}{8}$ $\frac{1}{64}$ 2.405e-2 0.997 1.275e-2 1.001 3.799e-2 1.098 2.127 $\frac{1}{16}$ $\frac{1}{256}$ 6.014e-3 1.000 3.187e-3 1.000 9.134e-3 1.028 39.827
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac14$ $\frac{1}{16}$ 9.577e-2 - 5.109e-2 - 1.741e-1 - 0.181 $\frac{1}{8}$ $\frac{1}{64}$ 2.405e-2 0.997 1.275e-2 1.001 3.799e-2 1.098 2.127 $\frac{1}{16}$ $\frac{1}{256}$ 6.014e-3 1.000 3.187e-3 1.000 9.134e-3 1.028 39.827
The convergence performance and CPU time by StbTGM
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac{1}{4}$ $\frac{1}{16}$ 9.577e-2 - 5.494e-2 - 1.540e-1 - 0.117 $\frac{1}{8}$ $\frac{1}{64}$ 2.404e-2 0.997 1.375e-2 1.000 3.682e-2 1.032 1.351 $\frac{1}{16}$ $\frac{1}{256}$ 6.012e-3 1.000 3.437e-3 1.000 9.267e-3 0.995 26.805
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac{1}{4}$ $\frac{1}{16}$ 9.577e-2 - 5.494e-2 - 1.540e-1 - 0.117 $\frac{1}{8}$ $\frac{1}{64}$ 2.404e-2 0.997 1.375e-2 1.000 3.682e-2 1.032 1.351 $\frac{1}{16}$ $\frac{1}{256}$ 6.012e-3 1.000 3.437e-3 1.000 9.267e-3 0.995 26.805
The convergence performance by StbTGM with fixed $H = 1/8$
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac18$ $\frac{1}{16}$ 9.470e-2 5.489e-2 5.040e-2 $\frac18$ $\frac{1}{64}$ 2.404e-2 0.989 1.375e-2 0.999 3.682e-2 0.226 $\frac18$ $\frac{1}{256}$ 7.033e-3 0.887 3.525e-3 0.982 3.704e-2 -0.004
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac18$ $\frac{1}{16}$ 9.470e-2 5.489e-2 5.040e-2 $\frac18$ $\frac{1}{64}$ 2.404e-2 0.989 1.375e-2 0.999 3.682e-2 0.226 $\frac18$ $\frac{1}{256}$ 7.033e-3 0.887 3.525e-3 0.982 3.704e-2 -0.004
The convergence performance and CPU time by TGM-$(P_1, P_1, P_1)$
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac{1}{4}$ $\frac{1}{16}$ 9.553e-2 - 5.539e-2 - 4.594e+7 - 0.117 $\frac{1}{8}$ $\frac{1}{64}$ 2.403e-2 0.996 1.386e-2 0.999 2.904e+6 - 1.351 $\frac{1}{16}$ $\frac{1}{256}$ null - null - null - -
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate CPU $\frac{1}{4}$ $\frac{1}{16}$ 9.553e-2 - 5.539e-2 - 4.594e+7 - 0.117 $\frac{1}{8}$ $\frac{1}{64}$ 2.403e-2 0.996 1.386e-2 0.999 2.904e+6 - 1.351 $\frac{1}{16}$ $\frac{1}{256}$ null - null - null - -
The approximation errors by StbTGM for $k = 0.1$
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.181e-2 - 4.057e-2 - 2.15254e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.297e-2 0.999 1.006e-2 1.006 5.853e-3 0.939 $\frac{1}{16}$ $\frac{1}{256}$ 3.243e-3 1.000 2.509e-3 1.001 1.536e-3 0.965
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.181e-2 - 4.057e-2 - 2.15254e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.297e-2 0.999 1.006e-2 1.006 5.853e-3 0.939 $\frac{1}{16}$ $\frac{1}{256}$ 3.243e-3 1.000 2.509e-3 1.001 1.536e-3 0.965
The approximation errors by StbTGM for $k = 0.01$
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.397e-2 - 7.288e-2 - 3.03543e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.350e-2 1.000 1.610e-2 1.089 8.070e-3 0.956 $\frac{1}{16}$ $\frac{1}{256}$ 3.372e-3 1.001 3.785e-3 1.044 2.081e-3 0.978
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.397e-2 - 7.288e-2 - 3.03543e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.350e-2 1.000 1.610e-2 1.089 8.070e-3 0.956 $\frac{1}{16}$ $\frac{1}{256}$ 3.372e-3 1.001 3.785e-3 1.044 2.081e-3 0.978
The approximation errors by StbTGM for $k = 0.001$
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.490e-2 - 4.467e-1 - 2.793e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.375e-2 0.999 6.834e-2 1.3541 6.980e-3 1.000 $\frac{1}{16}$ $\frac{1}{256}$ 3.423e-3 1.003 1.229e-2 1.238 1.755e-3 0.996
 H h $\|\varphi-\varphi^h\|_{1, \Omega_p}$ Rate $\|u-u^h\|_{1, \Omega_f}$ Rate $\|p-p^h\|_{0, \Omega_f}$ Rate $\frac{1}{4}$ $\frac{1}{16}$ 5.490e-2 - 4.467e-1 - 2.793e-2 - $\frac{1}{8}$ $\frac{1}{64}$ 1.375e-2 0.999 6.834e-2 1.3541 6.980e-3 1.000 $\frac{1}{16}$ $\frac{1}{256}$ 3.423e-3 1.003 1.229e-2 1.238 1.755e-3 0.996
 [1] Tong Zhang, Jinyun Yuan. Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 849-865. doi: 10.3934/dcdsb.2014.19.849 [2] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [3] Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971 [4] Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 [5] Changling Xu, Tianliang Hou. Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28 (2) : 897-910. doi: 10.3934/era.2020047 [6] Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $C^0$IPG method for biharmonic eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002 [7] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163 [8] Zhipeng Yang, Xuejian Li, Xiaoming He, Ju Ming. A stochastic collocation method based on sparse grids for a stochastic Stokes-Darcy model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 893-912. doi: 10.3934/dcdss.2021104 [9] Gianmarco Manzini, Annamaria Mazzia. A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem. Journal of Computational Dynamics, 2022, 9 (2) : 207-238. doi: 10.3934/jcd.2021020 [10] Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154 [11] Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056 [12] Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 [13] Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032 [14] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [15] Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1873-1894. doi: 10.3934/cpaa.2021074 [16] Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 [17] Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier. A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Networks and Heterogeneous Media, 2020, 15 (2) : 215-245. doi: 10.3934/nhm.2020010 [18] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339 [19] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [20] Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

2020 Impact Factor: 1.327