
-
Previous Article
An FEM-MLMC algorithm for a moving shutter diffraction in time stochastic model
- DCDS-B Home
- This Issue
-
Next Article
Global regularity results for the climate model with fractional dissipation
A comparative study on nonlocal diffusion operators related to the fractional Laplacian
1. | Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409-0020, USA |
2. | Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA |
In this paper, we study four nonlocal diffusion operators, including the fractional Laplacian, spectral fractional Laplacian, regional fractional Laplacian, and peridynamic operator. These operators represent the infinitesimal generators of different stochastic processes, and especially their differences on a bounded domain are significant. We provide extensive numerical experiments to understand and compare their differences. We find that these four operators collapse to the classical Laplace operator as $ \alpha \to2 $. The eigenvalues and eigenfunctions of these four operators are different, and the $ k $-th (for $ k \in {\mathbb N} $) eigenvalue of the spectral fractional Laplacian is always larger than those of the fractional Laplacian and regional fractional Laplacian. For any $ \alpha \in (0, 2) $, the peridynamic operator can provide a good approximation to the fractional Laplacian, if the horizon size $ \delta $ is sufficiently large. We find that the solution of the peridynamic model converges to that of the fractional Laplacian model at a rate of $ {\mathcal O}(\delta ^{-\alpha }) $. In contrast, although the regional fractional Laplacian can be used to approximate the fractional Laplacian as $ \alpha \to2 $, it generally provides inconsistent result from that of the fractional Laplacian if $ \alpha \ll 2 $. Moreover, some conjectures are made from our numerical results, which could contribute to the mathematics analysis on these operators.
References:
[1] |
N. Abatangelo and L. Dupaigne,
Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann I H Poincare C, 34 (2017), 439-467.
doi: 10.1016/j.anihpc.2016.02.001. |
[2] |
G. Acosta and J. P. Borthagaray,
A fractional Laplace equation-regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), 472-495.
doi: 10.1137/15M1033952. |
[3] |
R. Bañuelos and T. Kulczycki,
The Cauchy process and the Steklov problem, J. Funct. Anal., 211 (2004), 355-423.
doi: 10.1016/j.jfa.2004.02.005. |
[4] |
K. Bogdan, K. Burdzy and Z. Chen,
Censored stable processes, Probab. Theory Rel., 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[5] |
C. Burcur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pur. Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[6] |
B. A. Carreras, V. E. Lynch and G. M. Zaslavsky,
Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8 (2001), 5096-5103.
doi: 10.1063/1.1416180. |
[7] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
|
[8] |
Z.-Q. Chen, P. Kim and R. Song,
Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Rel., 146 (2010), 361-399.
doi: 10.1007/s00440-008-0193-3. |
[9] |
Z.-Q. Chen and R. Song,
Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.
doi: 10.1016/j.jfa.2005.05.004. |
[10] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
|
[11] |
Z.-Q. Chen, P. Kim and R. Song,
Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc., 109 (2014), 90-120.
doi: 10.1112/plms/pdt068. |
[12] |
R. Cont and P. Tankov,
Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[13] |
M. D'Elia and M. Gunzburger,
The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), 1245-1260.
doi: 10.1016/j.camwa.2013.07.022. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou,
Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294. |
[16] |
S. Duo, L. Ju and Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation,
Comput. Math. Appl., 2017. https://doi.org/10.1016/j.camwa.2017.04.008.
doi: 10.1016/j.camwa.2017.04.008. |
[17] |
S. Duo, H.-W. van Wyk and Y. Zhang,
A novel and accurate weighted trapezoidal finite difference method for the fractional laplacian, J. Comput. Phys., 355 (2018), 233-252.
doi: 10.1016/j.jcp.2017.11.011. |
[18] |
S. Duo and Y. Zhang,
Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18 (2015), 321-350.
doi: 10.4208/cicp.300414.120215a. |
[19] |
B. Dyda,
Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555.
|
[20] |
R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, preprint, arXiv: 1603.09736. Google Scholar |
[21] |
Q. Guan,
Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[22] |
Q. Guan and M. Gunzburger,
Analysis and approximation of a nonlocal obstacle problem, J. Comput. Appl. Math., 313 (2017), 102-118.
doi: 10.1016/j.cam.2016.09.012. |
[23] |
Q. Guan and Z. Ma,
Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.
doi: 10.1142/S021949370500150X. |
[24] |
Q. Guan and Z. Ma,
Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Rel., 134 (2006), 649-694.
doi: 10.1007/s00440-005-0438-3. |
[25] |
M. Gunzburger and R. Lehoucq,
A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.
doi: 10.1137/090766607. |
[26] |
K. Kaleta,
Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval, Studia Math., 209 (2012), 267-287.
doi: 10.4064/sm209-3-5. |
[27] |
M. Kwaśnicki,
Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.
doi: 10.1016/j.jfa.2011.12.004. |
[28] |
M. Kwasnicki,
Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2015), 7-51.
|
[29] |
N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. |
[30] |
T. Mengesha and Q. Du,
Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast., 116 (2014), 27-51.
doi: 10.1007/s10659-013-9456-z. |
[31] |
C. Mou and Y. Yi,
Interior regularity for regional fractional Laplacian, Comm. Math. Phys., 340 (2015), 233-251.
doi: 10.1007/s00220-015-2445-2. |
[32] |
R. Musina and A. I. Nazarov,
On fractional Laplacians, Comm. Part. Diff. Eq., 39 (2014), 1780-1790.
doi: 10.1080/03605302.2013.864304. |
[33] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[34] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[35] |
X. Ros-Oton and J. Serra,
Regularity theory for general stable operators, J. Differ. Equations, 260 (2016), 8675-8715.
doi: 10.1016/j.jde.2016.02.033. |
[36] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. |
[37] |
J. Serra,
Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partail Diff., 54 (2015), 3571-3601.
doi: 10.1007/s00526-015-0914-2. |
[38] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[39] |
M. F. Shlesinger, B. J. West and J. Klafter,
Lévy dynamics of enhanced diffusion: Application to turbulence, Phys. Rev. Lett., 58 (1987), 1100-1103.
doi: 10.1103/PhysRevLett.58.1100. |
[40] |
S. A. Silling,
Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.
doi: 10.1016/S0022-5096(99)00029-0. |
[41] |
R. Song and Z. Vondraček,
Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Rel., 125 (2003), 578-592.
doi: 10.1007/s00440-002-0251-1. |
[42] |
R. Song and Z. Vondraček,
On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab., 13 (2008), 325-336.
doi: 10.1214/ECP.v13-1388. |
[43] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N. J., 1970. |
[44] |
S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048, 15pp. |
[45] |
S. Y. Yolcu and T. Yolcu, Refined eigenvalue bounds on the Dirichlet fractional Laplacian,
Journal of Math. Phys. , 56 (2015), 073506, 12pp. |
show all references
References:
[1] |
N. Abatangelo and L. Dupaigne,
Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann I H Poincare C, 34 (2017), 439-467.
doi: 10.1016/j.anihpc.2016.02.001. |
[2] |
G. Acosta and J. P. Borthagaray,
A fractional Laplace equation-regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55 (2017), 472-495.
doi: 10.1137/15M1033952. |
[3] |
R. Bañuelos and T. Kulczycki,
The Cauchy process and the Steklov problem, J. Funct. Anal., 211 (2004), 355-423.
doi: 10.1016/j.jfa.2004.02.005. |
[4] |
K. Bogdan, K. Burdzy and Z. Chen,
Censored stable processes, Probab. Theory Rel., 127 (2003), 89-152.
doi: 10.1007/s00440-003-0275-1. |
[5] |
C. Burcur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pur. Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[6] |
B. A. Carreras, V. E. Lynch and G. M. Zaslavsky,
Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8 (2001), 5096-5103.
doi: 10.1063/1.1416180. |
[7] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
|
[8] |
Z.-Q. Chen, P. Kim and R. Song,
Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Rel., 146 (2010), 361-399.
doi: 10.1007/s00440-008-0193-3. |
[9] |
Z.-Q. Chen and R. Song,
Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.
doi: 10.1016/j.jfa.2005.05.004. |
[10] |
Z.-Q. Chen, P. Kim and R. Song,
Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.
|
[11] |
Z.-Q. Chen, P. Kim and R. Song,
Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc., 109 (2014), 90-120.
doi: 10.1112/plms/pdt068. |
[12] |
R. Cont and P. Tankov,
Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[13] |
M. D'Elia and M. Gunzburger,
The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), 1245-1260.
doi: 10.1016/j.camwa.2013.07.022. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou,
Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.
doi: 10.1137/110833294. |
[16] |
S. Duo, L. Ju and Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation,
Comput. Math. Appl., 2017. https://doi.org/10.1016/j.camwa.2017.04.008.
doi: 10.1016/j.camwa.2017.04.008. |
[17] |
S. Duo, H.-W. van Wyk and Y. Zhang,
A novel and accurate weighted trapezoidal finite difference method for the fractional laplacian, J. Comput. Phys., 355 (2018), 233-252.
doi: 10.1016/j.jcp.2017.11.011. |
[18] |
S. Duo and Y. Zhang,
Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well, Commun. Comput. Phys., 18 (2015), 321-350.
doi: 10.4208/cicp.300414.120215a. |
[19] |
B. Dyda,
Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555.
|
[20] |
R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, preprint, arXiv: 1603.09736. Google Scholar |
[21] |
Q. Guan,
Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[22] |
Q. Guan and M. Gunzburger,
Analysis and approximation of a nonlocal obstacle problem, J. Comput. Appl. Math., 313 (2017), 102-118.
doi: 10.1016/j.cam.2016.09.012. |
[23] |
Q. Guan and Z. Ma,
Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424.
doi: 10.1142/S021949370500150X. |
[24] |
Q. Guan and Z. Ma,
Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Rel., 134 (2006), 649-694.
doi: 10.1007/s00440-005-0438-3. |
[25] |
M. Gunzburger and R. Lehoucq,
A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.
doi: 10.1137/090766607. |
[26] |
K. Kaleta,
Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval, Studia Math., 209 (2012), 267-287.
doi: 10.4064/sm209-3-5. |
[27] |
M. Kwaśnicki,
Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.
doi: 10.1016/j.jfa.2011.12.004. |
[28] |
M. Kwasnicki,
Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2015), 7-51.
|
[29] |
N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. |
[30] |
T. Mengesha and Q. Du,
Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast., 116 (2014), 27-51.
doi: 10.1007/s10659-013-9456-z. |
[31] |
C. Mou and Y. Yi,
Interior regularity for regional fractional Laplacian, Comm. Math. Phys., 340 (2015), 233-251.
doi: 10.1007/s00220-015-2445-2. |
[32] |
R. Musina and A. I. Nazarov,
On fractional Laplacians, Comm. Part. Diff. Eq., 39 (2014), 1780-1790.
doi: 10.1080/03605302.2013.864304. |
[33] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[34] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[35] |
X. Ros-Oton and J. Serra,
Regularity theory for general stable operators, J. Differ. Equations, 260 (2016), 8675-8715.
doi: 10.1016/j.jde.2016.02.033. |
[36] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. |
[37] |
J. Serra,
Cσ+α regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partail Diff., 54 (2015), 3571-3601.
doi: 10.1007/s00526-015-0914-2. |
[38] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[39] |
M. F. Shlesinger, B. J. West and J. Klafter,
Lévy dynamics of enhanced diffusion: Application to turbulence, Phys. Rev. Lett., 58 (1987), 1100-1103.
doi: 10.1103/PhysRevLett.58.1100. |
[40] |
S. A. Silling,
Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.
doi: 10.1016/S0022-5096(99)00029-0. |
[41] |
R. Song and Z. Vondraček,
Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Rel., 125 (2003), 578-592.
doi: 10.1007/s00440-002-0251-1. |
[42] |
R. Song and Z. Vondraček,
On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab., 13 (2008), 325-336.
doi: 10.1214/ECP.v13-1388. |
[43] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N. J., 1970. |
[44] |
S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048, 15pp. |
[45] |
S. Y. Yolcu and T. Yolcu, Refined eigenvalue bounds on the Dirichlet fractional Laplacian,
Journal of Math. Phys. , 56 (2015), 073506, 12pp. |















![]() | 0.2 | 0.5 | 0.7 | 0.9 | 1 | 1.2 | 1.5 | 1. 8 | 1.95 | 1.999 | |
1 | 1.0945 | 1.2533 | 1.3718 | 1.5014 | 1.5708 | 1.7193 | 1.9687 | 2.2543 | 2.4123 | 2.4663 | 2.4674 |
0.9575 | 0.9702 | 1.0203 | 1.1032 | 1.1578 | 1.2971 | 1.5976 | 2.0488 | 2.3520 | 2.4650 | ||
0.0003 | 0.0038 | 0.0170 | 0.0640 | 0.1135 | 0.2939 | 0.8088 | 1.6602 | 2.2444 | 2.4628 | ||
2 | 1.2573 | 1.7725 | 2.2285 | 2.8018 | 3.1416 | 3.9498 | 5.5683 | 7.8500 | 9.3206 | 9.8583 | 9.8696 |
1.1966 | 1.6016 | 1.9733 | 2.4583 | 2.7549 | 3.4870 | 5.0600 | 7.5033 | 9.2082 | 9.8559 | ||
0.1878 | 0.4593 | 0.6729 | 0.9799 | 1.2026 | 1.8719 | 3.6509 | 6.7378 | 8.9854 | 9.8512 | ||
3 | 1.3635 | 2.1708 | 2.9598 | 4.0357 | 4.7124 | 6.4252 | 10.230 | 16.287 | 20.550 | 22.172 | 22.207 |
1.3191 | 2.0289 | 2.7294 | 3.6987 | 4.3171 | 5.9121 | 9.5948 | 15.800 | 20.384 | 22.169 | ||
0.3085 | 0.8626 | 1.3646 | 2.0823 | 2.5760 | 3.9902 | 7.7500 | 14.701 | 20.049 | 22.161 | ||
4 | 1.4442 | 2.5066 | 3.6201 | 5.2283 | 6.2832 | 9.0744 | 15.750 | 27.335 | 36.012 | 39.406 | 29.478 |
1.4106 | 2.3873 | 3.4131 | 4.9055 | 5.8925 | 8.5350 | 15.020 | 26.725 | 35.794 | 39.401 | ||
0.3981 | 1.2091 | 2.0140 | 3.2054 | 4.0292 | 6.3902 | 12.811 | 25.313 | 35.349 | 39.391 | ||
5 | 1.5101 | 2.8025 | 4.2322 | 6.3912 | 7.8540 | 11.861 | 22.011 | 40.847 | 55.645 | 61.558 | 61.685 |
1.4817 | 2.6949 | 4.0371 | 6.0733 | 7.4607 | 11.293 | 21.191 | 40.115 | 55.374 | 61.552 | ||
0.4700 | 1.5149 | 2.6231 | 4.3230 | 5.5171 | 8.9817 | 18.670 | 38.408 | 54.820 | 61.540 | ||
6 | 1.5662 | 3.0700 | 4.8083 | 7.5309 | 9.4248 | 14.761 | 28.934 | 56.714 | 79.402 | 88.627 | 88.826 |
1.5422 | 2.9730 | 4.6253 | 7.2206 | 9.0334 | 14.175 | 28.037 | 55.868 | 79.080 | 88.620 | ||
0.5306 | 1.7911 | 3.1993 | 5.4300 | 7.0245 | 11.722 | 25.235 | 53.876 | 78.418 | 88.605 | ||
8 | 1.6590 | 3.5449 | 5.8809 | 9.7564 | 12.566 | 20.847 | 44.547 | 95.187 | 139.14 | 157.51 | 157.91 |
1.6400 | 3.4612 | 5.7133 | 9.4550 | 12.175 | 20.225 | 43.509 | 94.122 | 138.72 | 157.50 | ||
0.6296 | 2.2799 | 4.2751 | 7.6101 | 10.072 | 17.552 | 40.218 | 91.591 | 137.85 | 157.49 | ||
10 | 1.7347 | 3.9633 | 6.8752 | 11.926 | 15.708 | 27.249 | 62.256 | 142.24 | 215.00 | 246.06 | 246.74 |
1.7189 | 3.8886 | 6.7186 | 11.632 | 15.317 | 26.598 | 61.096 | 140.96 | 214.48 | 246.05 | ||
0.7095 | 2.7090 | 5.2735 | 9.7490 | 13.145 | 23.749 | 57.377 | 137.92 | 213.39 | 246.02 | ||
20 | 1.9926 | 5.6050 | 11.169 | 22.255 | 31.416 | 62.601 | 176.09 | 495.30 | 830.70 | 983.56 | 986.96 |
1.9836 | 5.5525 | 11.042 | 21.981 | 31.025 | 61.854 | 174.45 | 493.09 | 829.69 | 983.53 | ||
0.9779 | 4.3810 | 9.5850 | 19.998 | 28.657 | 58.439 | 169.09 | 487.74 | 827.58 | 983.49 |
![]() | 0.2 | 0.5 | 0.7 | 0.9 | 1 | 1.2 | 1.5 | 1. 8 | 1.95 | 1.999 | |
1 | 1.0945 | 1.2533 | 1.3718 | 1.5014 | 1.5708 | 1.7193 | 1.9687 | 2.2543 | 2.4123 | 2.4663 | 2.4674 |
0.9575 | 0.9702 | 1.0203 | 1.1032 | 1.1578 | 1.2971 | 1.5976 | 2.0488 | 2.3520 | 2.4650 | ||
0.0003 | 0.0038 | 0.0170 | 0.0640 | 0.1135 | 0.2939 | 0.8088 | 1.6602 | 2.2444 | 2.4628 | ||
2 | 1.2573 | 1.7725 | 2.2285 | 2.8018 | 3.1416 | 3.9498 | 5.5683 | 7.8500 | 9.3206 | 9.8583 | 9.8696 |
1.1966 | 1.6016 | 1.9733 | 2.4583 | 2.7549 | 3.4870 | 5.0600 | 7.5033 | 9.2082 | 9.8559 | ||
0.1878 | 0.4593 | 0.6729 | 0.9799 | 1.2026 | 1.8719 | 3.6509 | 6.7378 | 8.9854 | 9.8512 | ||
3 | 1.3635 | 2.1708 | 2.9598 | 4.0357 | 4.7124 | 6.4252 | 10.230 | 16.287 | 20.550 | 22.172 | 22.207 |
1.3191 | 2.0289 | 2.7294 | 3.6987 | 4.3171 | 5.9121 | 9.5948 | 15.800 | 20.384 | 22.169 | ||
0.3085 | 0.8626 | 1.3646 | 2.0823 | 2.5760 | 3.9902 | 7.7500 | 14.701 | 20.049 | 22.161 | ||
4 | 1.4442 | 2.5066 | 3.6201 | 5.2283 | 6.2832 | 9.0744 | 15.750 | 27.335 | 36.012 | 39.406 | 29.478 |
1.4106 | 2.3873 | 3.4131 | 4.9055 | 5.8925 | 8.5350 | 15.020 | 26.725 | 35.794 | 39.401 | ||
0.3981 | 1.2091 | 2.0140 | 3.2054 | 4.0292 | 6.3902 | 12.811 | 25.313 | 35.349 | 39.391 | ||
5 | 1.5101 | 2.8025 | 4.2322 | 6.3912 | 7.8540 | 11.861 | 22.011 | 40.847 | 55.645 | 61.558 | 61.685 |
1.4817 | 2.6949 | 4.0371 | 6.0733 | 7.4607 | 11.293 | 21.191 | 40.115 | 55.374 | 61.552 | ||
0.4700 | 1.5149 | 2.6231 | 4.3230 | 5.5171 | 8.9817 | 18.670 | 38.408 | 54.820 | 61.540 | ||
6 | 1.5662 | 3.0700 | 4.8083 | 7.5309 | 9.4248 | 14.761 | 28.934 | 56.714 | 79.402 | 88.627 | 88.826 |
1.5422 | 2.9730 | 4.6253 | 7.2206 | 9.0334 | 14.175 | 28.037 | 55.868 | 79.080 | 88.620 | ||
0.5306 | 1.7911 | 3.1993 | 5.4300 | 7.0245 | 11.722 | 25.235 | 53.876 | 78.418 | 88.605 | ||
8 | 1.6590 | 3.5449 | 5.8809 | 9.7564 | 12.566 | 20.847 | 44.547 | 95.187 | 139.14 | 157.51 | 157.91 |
1.6400 | 3.4612 | 5.7133 | 9.4550 | 12.175 | 20.225 | 43.509 | 94.122 | 138.72 | 157.50 | ||
0.6296 | 2.2799 | 4.2751 | 7.6101 | 10.072 | 17.552 | 40.218 | 91.591 | 137.85 | 157.49 | ||
10 | 1.7347 | 3.9633 | 6.8752 | 11.926 | 15.708 | 27.249 | 62.256 | 142.24 | 215.00 | 246.06 | 246.74 |
1.7189 | 3.8886 | 6.7186 | 11.632 | 15.317 | 26.598 | 61.096 | 140.96 | 214.48 | 246.05 | ||
0.7095 | 2.7090 | 5.2735 | 9.7490 | 13.145 | 23.749 | 57.377 | 137.92 | 213.39 | 246.02 | ||
20 | 1.9926 | 5.6050 | 11.169 | 22.255 | 31.416 | 62.601 | 176.09 | 495.30 | 830.70 | 983.56 | 986.96 |
1.9836 | 5.5525 | 11.042 | 21.981 | 31.025 | 61.854 | 174.45 | 493.09 | 829.69 | 983.53 | ||
0.9779 | 4.3810 | 9.5850 | 19.998 | 28.657 | 58.439 | 169.09 | 487.74 | 827.58 | 983.49 |
[1] |
Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 |
[2] |
Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209 |
[3] |
Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008 |
[4] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[5] |
Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013 |
[6] |
Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905 |
[7] |
Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581 |
[8] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[9] |
Jacques Giacomoni, Tuhina Mukherjee, Konijeti Sreenadh. Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 311-337. doi: 10.3934/dcdss.2019022 |
[10] |
Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 |
[11] |
Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 |
[12] |
Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160 |
[13] |
De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431 |
[14] |
Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393 |
[15] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[16] |
Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 |
[17] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[18] |
Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068 |
[19] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020425 |
[20] |
Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]