November  2018, 23(9): 3915-3934. doi: 10.3934/dcdsb.2018117

Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives

a). 

College of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

b). 

Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK

The author is grateful to the Tianjin Thousand Talents Plan for its financial support.

Received  April 2017 Published  November 2018 Early access  April 2018

In this work, we shall consider the existence and uniqueness of stationary solutions to stochastic partial functional differential equations with additive noise in which a neutral type of delay is explicitly presented. We are especially concerned about those delays appearing in both spatial and temporal derivative terms in which the coefficient operator under spatial variables may take the same form as the infinitesimal generator of the equation. We establish the stationary property of the neutral system under investigation by focusing on distributed delays. In the end, an illustrative example is analyzed to explain the theory in this work.

Citation: Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117
References:
[1]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Math., A. K. Peters, Wellesley, Massachusetts, 2005.

[2]

E. B. Davies, One Parameter Semigroups, Academic Press, New York, 1980.

[3]

G. Di BlasioK. Kunisch and E. Sinestrari, $ L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.

[4]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.

[5]

J. Hale and S. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, New York, Springer-Verlag, Heidelberg/Berlin, 1993.

[6]

K. Ito and T. Tarn, A linear quadratic optimal control for neutral systems, Nonlinear Anal. TMA., 9 (1985), 699-727.  doi: 10.1016/0362-546X(85)90013-6.

[7]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert spaces, Osaka J. Math., 28 (1991), 347-365. 

[8]

J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Springer-Verlag, Berlin, New York, 1972.

[9]

K. Liu, Uniform $ L^2$-stability in mean square of linear autonomous stochastic functional differential equations in Hilbert spaces, Stoch. Proc. Appl., 115 (2005), 1131-1165.  doi: 10.1016/j.spa.2005.02.006.

[10]

K. Liu, On stationarity of stochastic retarded linear equations with unbounded drift operators, Stoch. Anal. Appl., 34 (2016), 547-572. 

[11]

K. Liu, Norm continuity of solution semigroups of a class of neutral functional differential equations with distributed delay, Applied. Math. Letters., 69 (2017), 35-41.  doi: 10.1016/j.aml.2017.01.010.

[12]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer-Verlag, New York, 2007.

[13]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.

[14]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Dekker, New York, 1997.

show all references

The author is grateful to the Tianjin Thousand Talents Plan for its financial support.

References:
[1]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Math., A. K. Peters, Wellesley, Massachusetts, 2005.

[2]

E. B. Davies, One Parameter Semigroups, Academic Press, New York, 1980.

[3]

G. Di BlasioK. Kunisch and E. Sinestrari, $ L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.

[4]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.

[5]

J. Hale and S. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, New York, Springer-Verlag, Heidelberg/Berlin, 1993.

[6]

K. Ito and T. Tarn, A linear quadratic optimal control for neutral systems, Nonlinear Anal. TMA., 9 (1985), 699-727.  doi: 10.1016/0362-546X(85)90013-6.

[7]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert spaces, Osaka J. Math., 28 (1991), 347-365. 

[8]

J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Springer-Verlag, Berlin, New York, 1972.

[9]

K. Liu, Uniform $ L^2$-stability in mean square of linear autonomous stochastic functional differential equations in Hilbert spaces, Stoch. Proc. Appl., 115 (2005), 1131-1165.  doi: 10.1016/j.spa.2005.02.006.

[10]

K. Liu, On stationarity of stochastic retarded linear equations with unbounded drift operators, Stoch. Anal. Appl., 34 (2016), 547-572. 

[11]

K. Liu, Norm continuity of solution semigroups of a class of neutral functional differential equations with distributed delay, Applied. Math. Letters., 69 (2017), 35-41.  doi: 10.1016/j.aml.2017.01.010.

[12]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer-Verlag, New York, 2007.

[13]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.

[14]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Dekker, New York, 1997.

[1]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[2]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096

[3]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[4]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

[5]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[6]

Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086

[7]

Laura Gambera, Umberto Guarnotta. Strongly singular convective elliptic equations in $ \mathbb{R}^N $ driven by a non-homogeneous operator. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022088

[8]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[9]

Paola F. Antonietti, Simone Scacchi, Giuseppe Vacca, Marco Verani. $ C^1 $-VEM for some variants of the Cahn-Hilliard equation: A numerical exploration. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 1919-1939. doi: 10.3934/dcdss.2022038

[10]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440

[12]

Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021058

[13]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[14]

Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044

[15]

Bassam Fayad, Maria Saprykina. Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 597-604. doi: 10.3934/dcds.2021129

[16]

Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074

[17]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017

[18]

Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367

[19]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[20]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (193)
  • HTML views (476)
  • Cited by (1)

Other articles
by authors

[Back to Top]