\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain

The author is grateful for Professor Shouhong Wang for his advice and suggestions.This research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.
Abstract Full Text(HTML) Related Papers Cited by
  • The main objective of this article is to study the dynamic transitions of the FitzHugh-Nagumo equations on a finite domain with the Neumann boundary conditions and with uniformly injected current. We show that when certain parameter conditions are satisfied, the system undergoes a continuous dynamic transition to a limit cycle. A mixed type transition is also found when other conditions are imposed on the parameters. The main method used here is Ma & Wang's dynamic transition theory, which can be used generally on different set-ups for the FitzHugh-Nagumo equations.

    Mathematics Subject Classification: Primary: 35Q92; Secondary: 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. G. CastenH. Cohen and P. A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quarterly of Applied Mathematics, 32 (1974/75), 365-402. 
    [2] G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35, Springer Science & Business Media, 2010.
    [3] R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278.  doi: 10.1007/BF02477753.
    [4] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.
    [5] S. Hagiwara and Y. Oomura, The critical depolarization for the spike in the squid giant axon, The Japanese Journal of Physiology, 8 (1958), 234-245.  doi: 10.2170/jjphysiol.8.234.
    [6] S. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. (Oxford), 27 (1976), 123-134.  doi: 10.1093/qmath/27.1.123.
    [7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.
    [8] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), p500. 
    [9] A. J. Hudspeth, T. M. Jessell, E. R. Kandel, J. H. Schwartz and S. A. Siegelbaum, Principles of Neural Science, 2013.
    [10] C. K. Jones, Stability of the travelling wave solution of the Fitzhugh-Nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.
    [11] M. KrupaB. Sandstede and P. Szmolyan, Fast and slow waves in the Fitzhugh-Nagumo equation, Journal of Differential Equations, 133 (1997), 49-97.  doi: 10.1006/jdeq.1996.3198.
    [12] T. Ma and S. Wang, Attractor bifurcation theory and its applications to Rayleigh-Bénard convection, Commun. Pure Appl. Anal., 2 (2003), 591-599.  doi: 10.3934/cpaa.2003.2.591.
    [13] T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005.
    [14] T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014.
  • 加载中
SHARE

Article Metrics

HTML views(862) PDF downloads(259) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return