The main objective of this article is to study the dynamic transitions of the FitzHugh-Nagumo equations on a finite domain with the Neumann boundary conditions and with uniformly injected current. We show that when certain parameter conditions are satisfied, the system undergoes a continuous dynamic transition to a limit cycle. A mixed type transition is also found when other conditions are imposed on the parameters. The main method used here is Ma & Wang's dynamic transition theory, which can be used generally on different set-ups for the FitzHugh-Nagumo equations.
Citation: |
[1] |
R. G. Casten, H. Cohen and P. A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quarterly of Applied Mathematics, 32 (1974/75), 365-402.
![]() ![]() |
[2] |
G. B. Ermentrout and D. H. Terman,
Mathematical Foundations of Neuroscience, vol. 35, Springer Science & Business Media, 2010.
![]() ![]() |
[3] |
R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278.
doi: 10.1007/BF02477753.![]() ![]() |
[4] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6.![]() ![]() |
[5] |
S. Hagiwara and Y. Oomura, The critical depolarization for the spike in the squid giant axon, The Japanese Journal of Physiology, 8 (1958), 234-245.
doi: 10.2170/jjphysiol.8.234.![]() ![]() |
[6] |
S. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. (Oxford), 27 (1976), 123-134.
doi: 10.1093/qmath/27.1.123.![]() ![]() ![]() |
[7] |
D. Henry,
Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.
![]() ![]() |
[8] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), p500.
![]() |
[9] |
A. J. Hudspeth, T. M. Jessell, E. R. Kandel, J. H. Schwartz and S. A. Siegelbaum,
Principles of Neural Science, 2013.
![]() |
[10] |
C. K. Jones, Stability of the travelling wave solution of the Fitzhugh-Nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469.
doi: 10.1090/S0002-9947-1984-0760971-6.![]() ![]() ![]() |
[11] |
M. Krupa, B. Sandstede and P. Szmolyan, Fast and slow waves in the Fitzhugh-Nagumo equation, Journal of Differential Equations, 133 (1997), 49-97.
doi: 10.1006/jdeq.1996.3198.![]() ![]() ![]() |
[12] |
T. Ma and S. Wang, Attractor bifurcation theory and its applications to Rayleigh-Bénard convection, Commun. Pure Appl. Anal., 2 (2003), 591-599.
doi: 10.3934/cpaa.2003.2.591.![]() ![]() ![]() |
[13] |
T. Ma and S. Wang,
Bifurcation Theory and Applications, vol. 53, World Scientific, 2005.
![]() ![]() |
[14] |
T. Ma and S. Wang,
Phase Transition Dynamics, Springer, 2014.
![]() ![]() |