[1]
|
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profile of the steady states for an SIS epidemic disease reaction-diffusion model, Dis. Cont. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1.
|
[2]
|
N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.
|
[3]
|
E. Bertuzzo, et al., On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7 (2010), 321-333.
doi: 10.1098/rsif.2009.0204.
|
[4]
|
M. J. Bouma and M. Pascual, Seasonal and interannual cycles of endemic cholera in Bengal 1891-1940 in relation to climate and geography, Hydrobiologia, 460 (2001), 147-156.
doi: 10.1007/978-94-017-3284-0_13.
|
[5]
|
F. Capone, C. V. De and L. R. De, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.
doi: 10.1007/s00285-014-0849-9.
|
[6]
|
F. Capone, C. V. De and L. R. De, Erratum to: Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1267-1268.
doi: 10.1007/s00285-015-0915-y.
|
[7]
|
C. T. Codeco, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir,
BMC Infect Dis, 1 (2001), p1.
doi: 10.1186/1471-2334-1-1.
|
[8]
|
R. R. Colwell and A. Huq, Environmental reservoir of Vibrio cholerae, the causative agent of cholera, Annals of the New York Academy of Sciences, 740 (1994), 44-54.
doi: 10.1111/j.1749-6632.1994.tb19852.x.
|
[9]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[10]
|
Z. Du and R. Peng, A priori $L^∞ $
estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.
doi: 10.1007/s00285-015-0914-z.
|
[11]
|
C. H. Fung, Cholera transmission dynamic models for public health practitioners,
Emerging Themes in Epidemiology, 11 (2014), p1.
doi: 10.1186/1742-7622-11-1.
|
[12]
|
P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. PDEs, 5 (1980), 999-1030.
doi: 10.1080/03605308008820162.
|
[13]
|
E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems, IEEE Trans. Automat. Contr., 26 (1981), 444-451.
doi: 10.1109/TAC.1981.1102589.
|
[14]
|
T. Kato,
Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1976.
|
[15]
|
H. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2016), 885-913.
doi: 10.1016/j.jde.2016.09.044.
|
[16]
|
B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008.
|
[17]
|
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154.
|
[18]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[19]
|
R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451.
|
[20]
|
H. L. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.
|
[21]
|
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.
|
[22]
|
J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math Biosci, 232 (2011), 31-41.
doi: 10.1016/j.mbs.2011.04.001.
|
[23]
|
X. Wang, D. Posny and J. Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Dis. Cont. Dyn. Syst. Ser. B, 21 (2016), 2785-2809.
doi: 10.3934/dcdsb.2016073.
|
[24]
|
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8.
|
[25]
|
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Systems, 11 (2012), 1652-1673.
doi: 10.1137/120872942.
|
[26]
|
K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.
|
[27]
|
T. Zhang, Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations, J. Diff. Equ., 262 (2017), 4724-4770.
doi: 10.1016/j.jde.2016.12.017.
|