\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity

  • * Corresponding author: Yuxiang Zhang

    * Corresponding author: Yuxiang Zhang
X. Zhang is partially supported by the NSF of China (No. 11571200,11425105), and Y. Zhang is supported in part by the NSF of China (No. 11701415,11601386).
Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • This work is devoted to study the spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. In the case of the spatial domain is bounded and heterogeneous, we assume some key parameters in the model explicitly depend on spatial location. We first define the basic reproduction number $\mathcal{R}_0$ for the disease transmission, which generalizes the existing definition of $\mathcal{R}_0$ for the system in spatially homogeneous environment. Then we establish a threshold type result for the disease eradication ($\mathcal{R}_0 <1$) or uniform persistence ($\mathcal{R}_0>1)$. In the case of the domain is linear, unbounded, and spatially homogenerous, we further establish the existence of traveling wave solutions and the minimum wave speed $c^*$ for the disease transmission. At the end of this work, we characteristic the minimum wave speed $c^*$ and provide a method for the calculation of $c^*$.

    Mathematics Subject Classification: Primary: 35B40, 35K57; Secondary: 37N25, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Biological interpretations for parameters in model (2)

    SymbolsInterpretations
    $N_0$Total population size at time $t=0$
    $d_i$Diffusion coefficients for $i=1, 2, 3, 4$
    $\mu$Birth/death rate
    $\sigma$Recovery rate
    $\mu_B$Loss rate of bacteria
    $\pi_B$Growth rate of bacteria
    $\beta(x)$Contact rate with contaminated water at location $x$
    $e(x)$Contribution of each infected person to the population of V. cholerae
     | Show Table
    DownLoad: CSV
  • [1] L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profile of the steady states for an SIS epidemic disease reaction-diffusion model, Dis. Cont. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.
    [2] N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.  doi: 10.1007/s00285-006-0015-0.
    [3] E. Bertuzzo, et al., On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7 (2010), 321-333.  doi: 10.1098/rsif.2009.0204.
    [4] M. J. Bouma and M. Pascual, Seasonal and interannual cycles of endemic cholera in Bengal 1891-1940 in relation to climate and geography, Hydrobiologia, 460 (2001), 147-156.  doi: 10.1007/978-94-017-3284-0_13.
    [5] F. CaponeC. V. De and L. R. De, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.  doi: 10.1007/s00285-014-0849-9.
    [6] F. CaponeC. V. De and L. R. De, Erratum to: Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1267-1268.  doi: 10.1007/s00285-015-0915-y.
    [7] C. T. Codeco, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis, 1 (2001), p1. doi: 10.1186/1471-2334-1-1.
    [8] R. R. Colwell and A. Huq, Environmental reservoir of Vibrio cholerae, the causative agent of cholera, Annals of the New York Academy of Sciences, 740 (1994), 44-54.  doi: 10.1111/j.1749-6632.1994.tb19852.x.
    [9] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.
    [10] Z. Du and R. Peng, A priori $L^∞ $ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.
    [11] C. H. Fung, Cholera transmission dynamic models for public health practitioners, Emerging Themes in Epidemiology, 11 (2014), p1. doi: 10.1186/1742-7622-11-1.
    [12] P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. PDEs, 5 (1980), 999-1030.  doi: 10.1080/03605308008820162.
    [13] E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems, IEEE Trans. Automat. Contr., 26 (1981), 444-451.  doi: 10.1109/TAC.1981.1102589.
    [14] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1976.
    [15] H. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2016), 885-913.  doi: 10.1016/j.jde.2016.09.044.
    [16] B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.
    [17] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.
    [18] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.
    [19] R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.
    [20] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.
    [21] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.
    [22] J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math Biosci, 232 (2011), 31-41.  doi: 10.1016/j.mbs.2011.04.001.
    [23] X. WangD. Posny and J. Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Dis. Cont. Dyn. Syst. Ser. B, 21 (2016), 2785-2809.  doi: 10.3934/dcdsb.2016073.
    [24] W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.
    [25] W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Systems, 11 (2012), 1652-1673.  doi: 10.1137/120872942.
    [26] K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579. 
    [27] T. Zhang, Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations, J. Diff. Equ., 262 (2017), 4724-4770.  doi: 10.1016/j.jde.2016.12.017.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(801) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return