
-
Previous Article
On the Cauchy problem for the XFEL Schrödinger equation
- DCDS-B Home
- This Issue
-
Next Article
On a free boundary problem for a nonlocal reaction-diffusion model
Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ)
1. | College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China |
2. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
The degenerate Bogdanov-Takens system $\dot x = y-(a_1x+a_2x^3),~\dot y = a_3x+a_4x^3$ has two normal forms, one of which is investigated in [Disc. Cont. Dyn. Syst. B (22)2017,1273-1293] and global behavior is analyzed for general parameters. To continue this work, in this paper we study the other normal form and perform all global phase portraits on the Poincaré disc. Since the parameters are not restricted to be sufficiently small, some classic bifurcation methods for small parameters, such as the Melnikov method, are no longer valid. We find necessary and sufficient conditions for existences of limit cycles and homoclinic loops respectively by constructing a distance function among orbits on the vertical isocline curve and further give the number of limit cycles for parameters in different regions. Finally we not only give the global bifurcation diagram, where global existences and monotonicities of the homoclinic bifurcation curve and the double limit cycle bifurcation curve are proved, but also classify all global phase portraits.
References:
[1] |
S. M. Baer, B. W. Kooi, Yu. A. Kuznetsov and H. R. Thieme,
Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66 (2006), 1339-1365.
doi: 10.1137/050627757. |
[2] |
J. Carr,
Applications of Center Manifold Theory, Springer-Verlag, New York, 1981. |
[3] |
C. Castillo-Chavez, Z. Feng and W. Huang,
Global dynamics of a Plant-Herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002-1020.
doi: 10.1137/110851614. |
[4] |
H. Chen, X. Chen and J. Xie,
Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Cont. Dyn. Syst. (Ser. B), 22 (2017), 1273-1293.
doi: 10.3934/dcdsb.2017062. |
[5] |
S. -N. Chow, C. Li and D. Wang,
Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, London, 1994. |
[6] |
F. Dumortier and C. Li,
On the uniqueness of limit cycles surrounding one or more singularities in Liénard equations, Nonlinearity, 9 (1996), 1489-1500.
doi: 10.1088/0951-7715/9/6/006. |
[7] |
F. Dumortier and C. Li,
Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59.
doi: 10.1006/jdeq.1997.3291. |
[8] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle Loop and Two saddle Cycle, J. Differential Equations, 176 (2001), 114-157.
doi: 10.1006/jdeq.2000.3977. |
[9] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ)Cuspidal Loop, J. Differential Equations, 175 (2001), 209-243.
doi: 10.1006/jdeq.2000.3978. |
[10] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ)global centre, J. Differential Equations, 188 (2003), 473-511.
doi: 10.1016/S0022-0396(02)00110-9. |
[11] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ)figure eight-loop, J. Differential Equations, 188 (2003), 512-554.
doi: 10.1016/S0022-0396(02)00111-0. |
[12] |
F. Dumortier, J. Llibre and J. Artés,
Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. |
[13] |
F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek,
Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian integrals, Springer-Verlag, Berlin, 1991. |
[14] |
F. Dumortier and C. Rousseau,
Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.
doi: 10.1088/0951-7715/3/4/004. |
[15] |
A. Gasull, H. Giacomini, S. Pérez-González and J. Torregrosa,
A proof of Perko's conjectures for the Bogdanov-Takens system, J. Diff. Equa., 255 (2013), 2655-2671.
doi: 10.1016/j.jde.2013.07.006. |
[16] |
J. Guckenheimer and P. Holmes,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
J. Hale,
Ordinary Differential Equations, Krieger Publishing Company, Florida, 1980. |
[18] |
P. Holmes and D. A. Rand,
Phase portraits and bifurcations of the nonlinear oscillator $\ddot x+(α+γ x^2)\dot x+β x+δ x^3 = 0$, Int. J. Non-linear Mech., 15 (1980), 449-458.
|
[19] |
E. Horozov,
Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3(In Russian), Trusdy Sem. Petrov., 5 (1979), 163-192.
|
[20] |
A. Khibnik, B. Krauskopf and C. Rousseau,
Global study of a family of cubic Liénard equations, Nonlinearity, 11 (1998), 1505-1519.
doi: 10.1088/0951-7715/11/6/005. |
[21] |
Yu. A. Kuznetsov,
Elements of Applied Bifurcation Theory(Third Edition), Springer-Verlag, New York, 2004. |
[22] |
Yu. A. Kuznetsov,
Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurc. Chaos, 15 (2005), 3535-3546.
doi: 10.1142/S0218127405014209. |
[23] |
C. Li and J. Llibre,
Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162.
doi: 10.1016/j.jde.2011.11.002. |
[24] |
A. Lins, W. de Melo and C. C. Pugh,
On Liénard's equation, Lecture Notes in Math., 597 (1977), 1172-1192.
|
[25] |
L. M. Perko,
A global analysis of the Bogdanov-Takens system, SIAM J. Appl. Math., 52 (1992), 1172-1192.
doi: 10.1137/0152069. |
[26] |
L. A. F. Roberto, P. R. da Silva and J. Torregrosa, Asymptotic expansion of the heteroclinic bifurcation for the planar normal form of the 1: 2 resonance, Int. J. Bifurc. Chaos, 26 (2016), 1650017, 8 pp.
doi: 10.1142/S0218127416500176. |
[27] |
S. Ruan and D. Xiao,
Global analysis in a Predator-Prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
|
[28] |
G. Sansone and R. Conti,
Non-linear Differential Equations, Pergamon Press, Oxford City, 1964. |
[29] |
Z. Zhang, T. Ding, W. Huang and Z. Dong,
Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. |
show all references
References:
[1] |
S. M. Baer, B. W. Kooi, Yu. A. Kuznetsov and H. R. Thieme,
Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66 (2006), 1339-1365.
doi: 10.1137/050627757. |
[2] |
J. Carr,
Applications of Center Manifold Theory, Springer-Verlag, New York, 1981. |
[3] |
C. Castillo-Chavez, Z. Feng and W. Huang,
Global dynamics of a Plant-Herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002-1020.
doi: 10.1137/110851614. |
[4] |
H. Chen, X. Chen and J. Xie,
Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Cont. Dyn. Syst. (Ser. B), 22 (2017), 1273-1293.
doi: 10.3934/dcdsb.2017062. |
[5] |
S. -N. Chow, C. Li and D. Wang,
Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, London, 1994. |
[6] |
F. Dumortier and C. Li,
On the uniqueness of limit cycles surrounding one or more singularities in Liénard equations, Nonlinearity, 9 (1996), 1489-1500.
doi: 10.1088/0951-7715/9/6/006. |
[7] |
F. Dumortier and C. Li,
Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59.
doi: 10.1006/jdeq.1997.3291. |
[8] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle Loop and Two saddle Cycle, J. Differential Equations, 176 (2001), 114-157.
doi: 10.1006/jdeq.2000.3977. |
[9] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ)Cuspidal Loop, J. Differential Equations, 175 (2001), 209-243.
doi: 10.1006/jdeq.2000.3978. |
[10] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ)global centre, J. Differential Equations, 188 (2003), 473-511.
doi: 10.1016/S0022-0396(02)00110-9. |
[11] |
F. Dumortier and C. Li,
Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ)figure eight-loop, J. Differential Equations, 188 (2003), 512-554.
doi: 10.1016/S0022-0396(02)00111-0. |
[12] |
F. Dumortier, J. Llibre and J. Artés,
Qualitative Theory of Planar Differential Systems, Springer-Verlag, New York, 2006. |
[13] |
F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek,
Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian integrals, Springer-Verlag, Berlin, 1991. |
[14] |
F. Dumortier and C. Rousseau,
Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.
doi: 10.1088/0951-7715/3/4/004. |
[15] |
A. Gasull, H. Giacomini, S. Pérez-González and J. Torregrosa,
A proof of Perko's conjectures for the Bogdanov-Takens system, J. Diff. Equa., 255 (2013), 2655-2671.
doi: 10.1016/j.jde.2013.07.006. |
[16] |
J. Guckenheimer and P. Holmes,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1990. |
[17] |
J. Hale,
Ordinary Differential Equations, Krieger Publishing Company, Florida, 1980. |
[18] |
P. Holmes and D. A. Rand,
Phase portraits and bifurcations of the nonlinear oscillator $\ddot x+(α+γ x^2)\dot x+β x+δ x^3 = 0$, Int. J. Non-linear Mech., 15 (1980), 449-458.
|
[19] |
E. Horozov,
Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3(In Russian), Trusdy Sem. Petrov., 5 (1979), 163-192.
|
[20] |
A. Khibnik, B. Krauskopf and C. Rousseau,
Global study of a family of cubic Liénard equations, Nonlinearity, 11 (1998), 1505-1519.
doi: 10.1088/0951-7715/11/6/005. |
[21] |
Yu. A. Kuznetsov,
Elements of Applied Bifurcation Theory(Third Edition), Springer-Verlag, New York, 2004. |
[22] |
Yu. A. Kuznetsov,
Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurc. Chaos, 15 (2005), 3535-3546.
doi: 10.1142/S0218127405014209. |
[23] |
C. Li and J. Llibre,
Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162.
doi: 10.1016/j.jde.2011.11.002. |
[24] |
A. Lins, W. de Melo and C. C. Pugh,
On Liénard's equation, Lecture Notes in Math., 597 (1977), 1172-1192.
|
[25] |
L. M. Perko,
A global analysis of the Bogdanov-Takens system, SIAM J. Appl. Math., 52 (1992), 1172-1192.
doi: 10.1137/0152069. |
[26] |
L. A. F. Roberto, P. R. da Silva and J. Torregrosa, Asymptotic expansion of the heteroclinic bifurcation for the planar normal form of the 1: 2 resonance, Int. J. Bifurc. Chaos, 26 (2016), 1650017, 8 pp.
doi: 10.1142/S0218127416500176. |
[27] |
S. Ruan and D. Xiao,
Global analysis in a Predator-Prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
|
[28] |
G. Sansone and R. Conti,
Non-linear Differential Equations, Pergamon Press, Oxford City, 1964. |
[29] |
Z. Zhang, T. Ding, W. Huang and Z. Dong,
Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992. |












possibilities of |
location of equilibria | types and stability | |
possibilities of |
location of equilibria | types and stability | |
limit cycles | homoclinic loops | |
one stable, small, surrounding |
no | |
no | no | |
no | no | |
one semi-stable, large | no | |
two, large, | no | |
the inner one is unstable, the outer one is stable | ||
one stable, large | one unstable figure-eight type | |
one stable, large; | ||
one unstable, small, surrounding |
no | |
one unstable, small, surrounding |
||
one stable, large | no |
limit cycles | homoclinic loops | |
one stable, small, surrounding |
no | |
no | no | |
no | no | |
one semi-stable, large | no | |
two, large, | no | |
the inner one is unstable, the outer one is stable | ||
one stable, large | one unstable figure-eight type | |
one stable, large; | ||
one unstable, small, surrounding |
no | |
one unstable, small, surrounding |
||
one stable, large | no |
limit cycles | homoclinic loops | |
no | no | |
one semi-stable, large | no | |
two, large, | no | |
inner one is unstable, outer one is stable | ||
one stable, large | one unstable figure-eight type | |
one stable, large; two unstable, small; | ||
surrounding |
no |
limit cycles | homoclinic loops | |
no | no | |
one semi-stable, large | no | |
two, large, | no | |
inner one is unstable, outer one is stable | ||
one stable, large | one unstable figure-eight type | |
one stable, large; two unstable, small; | ||
surrounding |
no |
[1] |
Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 |
[2] |
Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} $nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022033 |
[3] |
Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130 |
[4] |
Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041 |
[5] |
Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115 |
[6] |
Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022031 |
[7] |
Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078 |
[8] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[9] |
Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309 |
[10] |
Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2041-2056. doi: 10.3934/dcdsb.2019201 |
[11] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[12] |
Fátima Drubi, Santiago Ibáñez, David Rivela. Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 599-615. doi: 10.3934/dcdsb.2019256 |
[13] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
[14] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[15] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[16] |
Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 |
[17] |
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 |
[18] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[19] |
Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 |
[20] |
Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]