• Previous Article
    Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate
December  2018, 23(10): 4243-4254. doi: 10.3934/dcdsb.2018135

Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

* Corresponding author: Juntang Ding

Received  September 2017 Published  December 2018 Early access  April 2018

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 61473180).

In this paper, we consider a quasilinear reaction diffusion equation with Neumann boundary conditions in a bounded domain. Basing on Sobolev inequality and differential inequality technique, we obtain upper and lower bounds for the blow-up time of the solution. An example is also given to illustrate the abstract results obtained of this paper.

Citation: Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135
References:
[1]

K. Baghaei and M. Hesaaraki, Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions, Math. Methods Appl. Sci., 38 (2015), 527-536.  doi: 10.1002/mma.3085.

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22.  doi: 10.1016/S0377-0427(98)00100-9.

[3]

J. T. Ding, Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions, Comput. Math. Appl., 65 (2013), 1808-1822.  doi: 10.1016/j.camwa.2013.03.013.

[4]

J. T. Ding and H. J. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 433 (2016), 1718-1735.  doi: 10.1016/j.jmaa.2015.08.046.

[5]

J. T. Ding and H. J. Hu, Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions, Appl. Anal., 96 (2016), 549-562.  doi: 10.1080/00036811.2016.1143933.

[6]

J. T. Ding and X. H. Shen, Blow-up in p-Laplacian heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 67 (2016), Art. 125, 18 pp.

[7]

C. Enache, Blow-up, global existence and exponential decay estimates for a class of quasilinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 2864-2874.  doi: 10.1016/j.na.2007.08.063.

[8]

C. Enache, Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasgow Math. J., 53 (2011), 569-575.  doi: 10.1017/S0017089511000139.

[9]

L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.

[10]

Z. B. Fang and L. W. Ma, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. RWA, 32 (2016), 338-354.  doi: 10.1016/j.nonrwa.2016.05.005.

[11]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 2018, Springer, Heidelberg, 2011.

[12]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary, J. Math. Anal. Appl., 385 (2012), 1005-1014.  doi: 10.1016/j.jmaa.2011.07.018.

[13]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value. Prob., 2014 (2014), 1-14. 

[14]

M. Marras and S. Vernier-Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Contin. Dyn. Syst., (2013), 535-544. 

[15]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Methods Appl. Sci., 39 (2016), 2787-2798.  doi: 10.1002/mma.3728.

[16]

M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69 (2016), 687-696. 

[17]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in paraboblic problems under Neumann conditions, Appl. Anal., 85 (2006), 1301-1311.  doi: 10.1080/00036810600915730.

[18]

L. E. Payne and P. W. Schaefer, Bounds for the blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Section A, 139 (2009), 1289-1296.  doi: 10.1017/S0308210508000802.

[19]

X. F. Song and X. S. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput., 236 (2014), 78-92.  doi: 10.1016/j.amc.2014.03.023.

[20]

R. P. Sperb, Maximum Principles and Their Applications, Academic Press, New York, 1981.

show all references

References:
[1]

K. Baghaei and M. Hesaaraki, Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions, Math. Methods Appl. Sci., 38 (2015), 527-536.  doi: 10.1002/mma.3085.

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3-22.  doi: 10.1016/S0377-0427(98)00100-9.

[3]

J. T. Ding, Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions, Comput. Math. Appl., 65 (2013), 1808-1822.  doi: 10.1016/j.camwa.2013.03.013.

[4]

J. T. Ding and H. J. Hu, Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions, J. Math. Anal. Appl., 433 (2016), 1718-1735.  doi: 10.1016/j.jmaa.2015.08.046.

[5]

J. T. Ding and H. J. Hu, Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions, Appl. Anal., 96 (2016), 549-562.  doi: 10.1080/00036811.2016.1143933.

[6]

J. T. Ding and X. H. Shen, Blow-up in p-Laplacian heat equations with nonlinear boundary conditions, Z. Angew. Math. Phys. 67 (2016), Art. 125, 18 pp.

[7]

C. Enache, Blow-up, global existence and exponential decay estimates for a class of quasilinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 2864-2874.  doi: 10.1016/j.na.2007.08.063.

[8]

C. Enache, Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions, Glasgow Math. J., 53 (2011), 569-575.  doi: 10.1017/S0017089511000139.

[9]

L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.

[10]

Z. B. Fang and L. W. Ma, Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. RWA, 32 (2016), 338-354.  doi: 10.1016/j.nonrwa.2016.05.005.

[11]

B. Hu, Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 2018, Springer, Heidelberg, 2011.

[12]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary, J. Math. Anal. Appl., 385 (2012), 1005-1014.  doi: 10.1016/j.jmaa.2011.07.018.

[13]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value. Prob., 2014 (2014), 1-14. 

[14]

M. Marras and S. Vernier-Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Contin. Dyn. Syst., (2013), 535-544. 

[15]

M. MarrasS. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Methods Appl. Sci., 39 (2016), 2787-2798.  doi: 10.1002/mma.3728.

[16]

M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulgare Sci., 69 (2016), 687-696. 

[17]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in paraboblic problems under Neumann conditions, Appl. Anal., 85 (2006), 1301-1311.  doi: 10.1080/00036810600915730.

[18]

L. E. Payne and P. W. Schaefer, Bounds for the blow-up time for the heat equation under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Section A, 139 (2009), 1289-1296.  doi: 10.1017/S0308210508000802.

[19]

X. F. Song and X. S. Lv, Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput., 236 (2014), 78-92.  doi: 10.1016/j.amc.2014.03.023.

[20]

R. P. Sperb, Maximum Principles and Their Applications, Academic Press, New York, 1981.

[1]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic and Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[2]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021210

[3]

Ling-Bing He, Jie Ji, Ling-Xuan Shao. Lower bound for the Boltzmann equation whose regularity grows tempered with time. Kinetic and Related Models, 2021, 14 (4) : 705-724. doi: 10.3934/krm.2021020

[4]

Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276

[5]

S. E. Kuznetsov. An upper bound for positive solutions of the equation \Delta u=u^\alpha. Electronic Research Announcements, 2004, 10: 103-112.

[6]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[7]

Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022052

[8]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[9]

Geng Chen, Ronghua Pan, Shengguo Zhu. A polygonal scheme and the lower bound on density for the isentropic gas dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4259-4277. doi: 10.3934/dcds.2019172

[10]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[11]

Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158

[12]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[13]

Luís Simão Ferreira. A lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles. Kinetic and Related Models, 2022, 15 (1) : 91-117. doi: 10.3934/krm.2021045

[14]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[15]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[16]

Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83

[17]

Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294

[18]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure and Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Claude Carlet, Brahim Merabet. Asymptotic lower bound on the algebraic immunity of random balanced multi-output Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 197-217. doi: 10.3934/amc.2013.7.197

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (299)
  • HTML views (572)
  • Cited by (0)

Other articles
by authors

[Back to Top]