It is known that the linear Stokes-Lamé system can be stabilized by a boundary feedback in the form of a dissipative velocity matching on the common interface [
Citation: |
P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electron. J. Differential Equations, 2000 (2000), 15 pp. (electronic).
![]() ![]() |
|
G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties, in Fluids and Waves, vol. 440 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2007, 15-54.
![]() ![]() |
|
G. Avalos
and M. Dvorak
, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Appl. Math. (Warsaw), 35 (2008)
, 259-280.
doi: 10.4064/am35-3-2.![]() ![]() ![]() |
|
G. Avalos and D. Toundykov, On stability and trace regularity of solutions to ReissnerMindlin-Timoshenko equations, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), vol. 216 of Operator Theory: Advances and Applications, Birkhäuser, 2011, 79-91.
![]() ![]() |
|
G. Avalos
and R. Triggiani
, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Equ., 9 (2009)
, 341-370.
doi: 10.1007/s00028-009-0015-9.![]() ![]() ![]() |
|
G. Avalos
and R. Triggiani
, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009)
, 417-447.
doi: 10.3934/dcdss.2009.2.417.![]() ![]() ![]() |
|
G. Avalos
and R. Triggiani
, Backwards uniqueness of the C0-semigroup associated with a parabolic-hyperbolic Stokes-Lamé partial differential equation system, Trans. Amer. Math. Soc., 362 (2010)
, 3535-3561.
doi: 10.1090/S0002-9947-10-04851-8.![]() ![]() ![]() |
|
V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and Waves, vol. 440 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2007, 55-82.
![]() ![]() |
|
V. Barbu
, Z. Grujić
, I. Lasiecka
and A. Tuffaha
, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008)
, 1173-1207.
doi: 10.1512/iumj.2008.57.3284.![]() ![]() ![]() |
|
V. Barbu
, I. Lasiecka
and R. Triggiani
, Abstract settings for tangential boundary stabilization of {N}avier-{S}tokes equations by high-and low-gain feedback controllers, Nonlinear Anal., 64 (2006)
, 2704-2746.
doi: 10.1016/j.na.2005.09.012.![]() ![]() ![]() |
|
C. Bardos
, G. Lebeau
and J. Rauch
, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992)
, 1024-1065.
doi: 10.1137/0330055.![]() ![]() ![]() |
|
H. Beirão da Veiga
, On the existence of strong solutions to a coupled fluid-structure evolution problem, Journal of Mathematical Fluid Mechanics, 6 (2004)
, 21-52.
doi: 10.1007/s00021-003-0082-5.![]() ![]() ![]() |
|
L. Bociu
, D. Toundykov
and J.-P. Zolésio
, Well-posedness analysis for the total linearization of a fluid-elasticity interaction, SIAM J. Math. Anal., 47 (2015)
, 1958-2000.
doi: 10.1137/140970689.![]() ![]() ![]() |
|
L. Bociu and J. -P. Zol´esio, Linearization of a coupled system of nonlinear elasticity and viscous fluid, in Modern Aspects of the Theory of Partial Differential Equations, vol. 216 of Oper. Theory Adv. Appl., Birkh¨auser/Springer Basel AG, Basel, 2011, 93-120.
![]() ![]() |
|
M. Boulakia
, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech., 9 (2007)
, 262-294.
doi: 10.1007/s00021-005-0201-7.![]() ![]() ![]() |
|
F. Bucci
and I. Chueshov
, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Contin. Dyn. Syst., 22 (2008)
, 557-586.
doi: 10.3934/dcds.2008.22.557.![]() ![]() ![]() |
|
J. Chazarain
and A. Piriou
, Caractérisation des problémes mixtes hyperboliques bien posés, Ann. Inst. Fourier (Grenoble), 22 (1972)
, 193-237.
doi: 10.5802/aif.438.![]() ![]() ![]() |
|
G. Chen
, A note on the boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981)
, 106-113.
doi: 10.1137/0319008.![]() ![]() ![]() |
|
I. Chueshov
, I. Lasiecka
and D. Toundykov
, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst., 20 (2008)
, 459-509.
![]() ![]() |
|
I. Chueshov
, I. Lasiecka
and D. Toundykov
, Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dynam. Differential Equations, 21 (2009)
, 269-314.
doi: 10.1007/s10884-009-9132-y.![]() ![]() ![]() |
|
P. G. Ciarlet, Mathematical Elasticity. Vol. I, vol. 20 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988, Three-dimensional elasticity.
![]() ![]() |
|
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.
![]() ![]() |
|
H. Cohen and S. I. Rubinow, Some mathematical topics in biology, in Proc. Symp. on System Theory, Polytechnic Press, New York, 1965,321-337.
![]() |
|
C. Conca, J. Planchard, B. Thomas and R. Dautray, Problèmes Mathématiques en Couplage Fluide-Structure: Applications Aux Faisceaux Tubulaires, Editions Eyrolles, Paris, 1994.
![]() |
|
C. Conca
, J. San Martín H.
and M. Tucsnak
, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, 25 (2000)
, 1019-1042.
![]() ![]() |
|
D. Coutand
and S. Shkoller
, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006)
, 303-352.
doi: 10.1007/s00205-005-0385-2.![]() ![]() ![]() |
|
R. Datko
, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal., 3 (1972)
, 428-445.
doi: 10.1137/0503042.![]() ![]() ![]() |
|
B. Desjardins
and M. J. Esteban
, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999)
, 59-71.
doi: 10.1007/s002050050136.![]() ![]() ![]() |
|
B. Desjardins
, M. J. Esteban
, C. Grandmont
and P. Le Tallec
, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut., 14 (2001)
, 523-538.
![]() ![]() |
|
J. Donea
, S. Giuliani
and J. Halleux
, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, 33 (1982)
, 689-723.
doi: 10.1016/0045-7825(82)90128-1.![]() ![]() |
|
E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ. 3 (2003), 419-441, Dedicated to Philippe Bénilan,
doi: 10.1007/s00028-003-0110-1.![]() ![]() ![]() |
|
M. A. Fernández
and P. Le Tallec
, Linear stability analysis in fluid-structure interaction with transpiration. Ⅰ. Formulation and mathematical analysis, Comput. Methods Appl. Mech. Engrg., 192 (2003)
, 4805-4835.
doi: 10.1016/j.cma.2003.07.001.![]() ![]() ![]() |
|
M. A. Fernández
and P. Le Tallec
, Linear stability analysis in fluid-structure interaction with transpiration. Ⅱ. Numerical analysis and applications, Comput. Methods Appl. Mech. Engrg., 192 (2003)
, 4837-4873.
doi: 10.1016/j.cma.2003.08.001.![]() ![]() ![]() |
|
M. A. Fernández
and M. Moubachir
, An exact block-Newton algorithm for solving fluid-structure interaction problems, C. R. Math. Acad. Sci. Paris, 336 (2003)
, 681-686.
doi: 10.1016/S1631-073X(03)00151-1.![]() ![]() ![]() |
|
A. R. Galper
and T. Miloh
, Motion stability of a deformable body in an ideal fluid with applications to the N spheres problem, Phys. Fluids, 10 (1998)
, 119-130.
doi: 10.1063/1.869570.![]() ![]() ![]() |
|
C. Grandmont
, Existence for a three-dimensional steady state fluid-structure interaction problem, J. Math. Fluid Mech., 4 (2002)
, 76-94.
doi: 10.1007/s00021-002-8536-9.![]() ![]() ![]() |
|
C. Grandmont
and Y. Maday
, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000)
, 609-636.
doi: 10.1051/m2an:2000159.![]() ![]() ![]() |
|
C. Grandmont and Y. Maday, Fluid-structure interaction: A theoretical point of view, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London, 2003, 1-22.
![]() ![]() |
|
M. D. Gunzburger
, H.-C. Lee
and G. A. Seregin
, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., 2 (2000)
, 219-266.
doi: 10.1007/PL00000954.![]() ![]() ![]() |
|
K.-H. Hoffmann
and V. N. Starovoitov
, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl., 9 (1999)
, 633-648.
![]() ![]() |
|
M. A. Horn
, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1998)
, 126-150.
doi: 10.1006/jmaa.1998.5963.![]() ![]() ![]() |
|
M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J. Math. Systems Estim. Control, 8 (1998), 11 pp.
![]() ![]() |
|
T. J. R. Hughes
, W. K. Liu
and T. K. Zimmermann
, Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29 (1981)
, 329-349.
doi: 10.1016/0045-7825(81)90049-9.![]() ![]() ![]() |
|
M. Ignatova
, I. Kukavica
, I. Lasiecka
and A. Tuffaha
, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014)
, 467-499.
doi: 10.1088/0951-7715/27/3/467.![]() ![]() ![]() |
|
M. Ikawa
, A mixed problem for hyperbolic equations of second order with non-homogeneous Neumann type boundary condition, Osaka J. Math., 6 (1969)
, 339-374.
![]() ![]() |
|
V. Komornik, Exact Controllability and Stabilization, Masson, Paris, 1994.
![]() ![]() |
|
J. E. Lagnese
, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983)
, 163-182.
doi: 10.1016/0022-0396(83)90073-6.![]() ![]() ![]() |
|
J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10, Society for Industrial and Applied Mathematics, SIAM; Philadelphia, PA, 1989.
![]() ![]() |
|
I. Lasiecka
and R. Triggiani
, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989)
, 243-290.
doi: 10.1007/BF01448201.![]() ![]() ![]() |
|
I. Lasiecka
, Global uniform decay rates for the solutions to wave equation with nonlinear boundary conditions, Appl. Anal., 47 (1992)
, 191-212.
doi: 10.1080/00036819208840140.![]() ![]() ![]() |
|
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, vol. 75, Society for Industrial and Applied Mathematics, SIAM; Philadelphia, PA, 2002.
![]() ![]() |
|
I. Lasiecka
and Y. Lu
, Interface feedback control stabilization of a nonlinear fluid-structure interaction, Nonlinear Anal., 75 (2012)
, 1449-1460.
doi: 10.1016/j.na.2011.04.018.![]() ![]() ![]() |
|
I. Lasiecka
and D. Tataru
, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations, 6 (1993)
, 507-533.
![]() ![]() |
|
I. Lasiecka and R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, nonconservative second-order hyperbolic equations, Partial Differential Equation Methods in Control and Shape Analysis (Pisa); Lecture Notes in Pure and Appl. Math. , Dekker, 188 (1997), 215-243.
![]() ![]() |
|
J. -L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systémes Distribués. Tome 1, vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics], Masson, Paris, 1988, Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.
![]() ![]() |
|
W. Littman, Near optimal time boundary controllability for a class of hyperbolic equations, in Control Problems for Systems Described by Partial Differential Equations and Applications (Gainesville, Fla., 1986), vol. 97 of Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1987,307-312.
![]() ![]() |
|
Y. Lu
, Uniform decay rates for the energy in nonlinear fluid structure interaction with monotone viscous damping, Palest. J. Math., 2 (2013)
, 215-232.
![]() ![]() |
|
Y. Lu
, Uniform stabilization to equilibrium of a nonlinear fluid-structure interaction model, Nonlinear Anal. Real World Appl., 25 (2015)
, 51-63.
doi: 10.1016/j.nonrwa.2015.02.006.![]() ![]() ![]() |
|
C. S. Morawetz
, J. V. Ralston
and W. A. Strauss
, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977)
, 447-508.
doi: 10.1002/cpa.3160300405.![]() ![]() ![]() |
|
B. Palmerio
, A two-dimensional FEM adaptive moving-node method for steady Euler flow simulations, Computer Methods in Applied Mechanics and Engineering, 71 (1988)
, 315-340.
doi: 10.1016/0045-7825(88)90038-2.![]() ![]() |
|
S. Piperno and C. Farhat, Design of efficient partitioned procedures for the transient solution of aeroelastic problems, in Fluid-Structure Interaction, Innov. Tech. Ser., Kogan Page Sci., London, 2003, 23-49.
![]() ![]() |
|
J. P. Quinn
and D. L. Russell
, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977)
, 97-127.
doi: 10.1017/S0308210500018072.![]() ![]() ![]() |
|
R. Sakamoto, Hyperbolic Boundary Value Problems, Cambridge University Press, Cambridge, 1982, Translated from the Japanese by Katsumi Miyahara.
![]() ![]() |
|
J. A. San Martín
, V. Starovoitov
and M. Tucsnak
, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., 161 (2002)
, 113-147.
doi: 10.1007/s002050100172.![]() ![]() ![]() |
|
J. Serrin, Mathematical principles of classical fluid mechanics, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-G¨ottingen-Heidelberg, 1959,125-263.
![]() ![]() |
|
T. Takahashi
and M. Tucsnak
, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., 6 (2004)
, 53-77.
doi: 10.1007/s00021-003-0083-4.![]() ![]() ![]() |
|
N. Takashi
and T. J. Hughes
, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Computer Methods in Applied Mechanics and Engineering, 95 (1992)
, 115-138.
doi: 10.1016/0045-7825(92)90085-X.![]() ![]() |
|
P. L. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, 190 (2001), 3039-3067, Advances in Computational Methods for Fluid-Structure Interaction.
doi: 10.1016/S0045-7825(00)00381-9.![]() ![]() |
|
J. Tambača
, M. Kosor
, S. Čanić
and D. Paniagua
, Mathematical modeling of vascular stents, SIAM J. Appl. Math., 70 (2010)
, 1922-1952.
doi: 10.1137/080722618.![]() ![]() ![]() |
|
D. Tataru
, A priori estimates of carleman's type in domains with boundary, J. Math. Pures Appl. (9), 73 (1994)
, 355-387.
![]() ![]() |
|
D. Tataru
, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl., 75 (1996)
, 367-408.
![]() ![]() |
|
R. Triggiani
and P.-F. Yao
, Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot, Appl. Math. Optim., 46 (2002)
, 331-375, Special issue dedicated to the memory of Jacques-Louis Lions.
doi: 10.1007/s00245-002-0751-5.![]() ![]() ![]() |
A 2D sample of an admissible control volume