May  2018, 23(3): 1155-1176. doi: 10.3934/dcdsb.2018146

Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows

1. 

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

2. 

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

3. 

Universidad Miguel Hernandez de Elche, Centro de Investigación Operativa, Avda. Universidad s/n, 03202-Elche (Alicante), Spain

* Corresponding author

Received  March 2017 Revised  June 2017 Published  May 2018 Early access  February 2018

Fund Project: The first two authors were partially supported by the State Fund for Fundamental Research of Ukraine under grant GP/F66/14921 and by the Grant of the National Academy of Sciences of Ukraine 2290/2018. The third author was partially supported by Spanish Ministry of Economy and Competitiveness and FEDER, projects MTM2015-63723-P and MTM2016-74921-P, and by Junta de Andalucía (Spain), project P12-FQM-1492.

In this paper we prove the existence of global attractors in the strong topology of the phase space for semiflows generated by vanishing viscosity approximations of some class of complex fluids. We also show that the attractors tend to the set of all complete bounded trajectories of the original problem when the parameter of the approximations goes to zero.

Citation: Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146
References:
[1]

J. M. AmigóI. CattoA. Giménez and J. Valero, Attractors for a non-linear parabolic equation modelling suspension flows, Discrete Contin. Dyn. Sist., Series B, 11 (2009), 205-231. 

[2]

J. M. AmigóA. GiménezF. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681-2700.  doi: 10.1142/S0218127410027295.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989.

[4]

E. CancèsI. Catto and Yo. Gati, Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian flows, SIAM J. Math. Anal., 37 (2005), 60-82.  doi: 10.1137/S0036141003430044.

[5]

E. Cancès and C. Le Bris, Convergence to equilibrium of a multiscale model for suspensions, Discrete Contin. Dyn. Sist., Series B, 6 (2006), 449-470.  doi: 10.3934/dcdsb.2006.6.449.

[6]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.

[7]

E. A. FeinbergP. O. Kasyanov and M. Z. Zgurovsky, Uniform Fatou's lemma, J. Math. Anal. Appl., 444 (2016), 550-567.  doi: 10.1016/j.jmaa.2016.06.044.

[8]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1975. doi: 10.1002/mana.19750672207.

[9]

A. Giménez, F. Morillas, J. Valero and J. M. Amigó, Stability and numerical analysis of the Hebraud-Lequeux model for suspensions, Discrete Dyn. Nat. Soc. , 2011 (2011), Art. ID 415921, 24 pp.

[10]

N. V. GorbanO. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Carathéodory's nonlinearity, Nonlinear Anal., 98 (2014), 13-26.  doi: 10.1016/j.na.2013.12.004.

[11]

P. Hébraud and F. Lequeux, Mode-coupling theory for the pasty rheology of soft glassy materials, Phys. Rev. Lett., 81 (1998), 2934-2937. 

[12]

O. V. Kapustyan, J. Valero, P. O. Kasyanov, A. Giménez and J. M. Amigó, Convergence of numerical approximations for a non-Newtonian model of suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1540022, 24 pp.

[13]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.

[14]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.

[16]

J. ValeroA. GiménezO. V. KapustyanP. Kasyanov and J. M. Amigó, Convergence of equilibria for numerical approximations of a suspension model, Comput. Math. Appl., 72 (2016), 856-878.  doi: 10.1016/j.camwa.2016.05.034.

[17]

K. Yosida, Functional Analysis, Springer, Berlin, 1980.

[18]

M. Z. ZgurovskyP. O. Kasyanov and J. Valero, Noncoercive evolution inclusions for Sk type operators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2823-2834.  doi: 10.1142/S0218127410027386.

[19]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and variation inequalities for earth data processing Ⅲ, Springer-Verlag, Berlin, 2012.

[20]

M. Z. Zgurovsky and P. O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, in Continuous and Distributed Systems: Theory and Applications, Solid Mechanics and Its Applications, Springer, Cham, 211 (2014), 149-162.

show all references

References:
[1]

J. M. AmigóI. CattoA. Giménez and J. Valero, Attractors for a non-linear parabolic equation modelling suspension flows, Discrete Contin. Dyn. Sist., Series B, 11 (2009), 205-231. 

[2]

J. M. AmigóA. GiménezF. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681-2700.  doi: 10.1142/S0218127410027295.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow, 1989.

[4]

E. CancèsI. Catto and Yo. Gati, Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian flows, SIAM J. Math. Anal., 37 (2005), 60-82.  doi: 10.1137/S0036141003430044.

[5]

E. Cancès and C. Le Bris, Convergence to equilibrium of a multiscale model for suspensions, Discrete Contin. Dyn. Sist., Series B, 6 (2006), 449-470.  doi: 10.3934/dcdsb.2006.6.449.

[6]

V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76 (1997), 913-964.  doi: 10.1016/S0021-7824(97)89978-3.

[7]

E. A. FeinbergP. O. Kasyanov and M. Z. Zgurovsky, Uniform Fatou's lemma, J. Math. Anal. Appl., 444 (2016), 550-567.  doi: 10.1016/j.jmaa.2016.06.044.

[8]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1975. doi: 10.1002/mana.19750672207.

[9]

A. Giménez, F. Morillas, J. Valero and J. M. Amigó, Stability and numerical analysis of the Hebraud-Lequeux model for suspensions, Discrete Dyn. Nat. Soc. , 2011 (2011), Art. ID 415921, 24 pp.

[10]

N. V. GorbanO. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Carathéodory's nonlinearity, Nonlinear Anal., 98 (2014), 13-26.  doi: 10.1016/j.na.2013.12.004.

[11]

P. Hébraud and F. Lequeux, Mode-coupling theory for the pasty rheology of soft glassy materials, Phys. Rev. Lett., 81 (1998), 2934-2937. 

[12]

O. V. Kapustyan, J. Valero, P. O. Kasyanov, A. Giménez and J. M. Amigó, Convergence of numerical approximations for a non-Newtonian model of suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1540022, 24 pp.

[13]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.

[14]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.

[16]

J. ValeroA. GiménezO. V. KapustyanP. Kasyanov and J. M. Amigó, Convergence of equilibria for numerical approximations of a suspension model, Comput. Math. Appl., 72 (2016), 856-878.  doi: 10.1016/j.camwa.2016.05.034.

[17]

K. Yosida, Functional Analysis, Springer, Berlin, 1980.

[18]

M. Z. ZgurovskyP. O. Kasyanov and J. Valero, Noncoercive evolution inclusions for Sk type operators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2823-2834.  doi: 10.1142/S0218127410027386.

[19]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and N. V. Zadoianchuk, Evolution Inclusions and variation inequalities for earth data processing Ⅲ, Springer-Verlag, Berlin, 2012.

[20]

M. Z. Zgurovsky and P. O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, in Continuous and Distributed Systems: Theory and Applications, Solid Mechanics and Its Applications, Springer, Cham, 211 (2014), 149-162.

[1]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[2]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[3]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[4]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[5]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[6]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[7]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[8]

Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021043

[9]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[10]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[11]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[12]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[13]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[14]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[15]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[16]

Chunyan Zhao, Chengkui Zhong, Xiangming Zhu. Existence of compact $ \varphi $-attracting sets and estimate of their attractive velocity for infinite-dimensional dynamical systems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022051

[17]

Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022093

[18]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[19]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[20]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (231)
  • HTML views (314)
  • Cited by (0)

[Back to Top]