We prove global well-posedness of the subcritical generalized Korteweg-de Vries equation (the mKdV and the gKdV with quartic power of nonlinearity) subject to an additive random perturbation. More precisely, we prove that if the driving noise is a cylindrical Wiener process on $L^2(\mathbb{R})$ and the covariance operator is Hilbert-Schmidt in an appropriate Sobolev space, then the solutions with $H^1(\mathbb{R})$ initial data are globally well-posed in $H^1(\mathbb{R})$. This extends results obtained by A. de Bouard and A. Debussche for the stochastic KdV equation.
Citation: |
R. A. Adams and J. J. F. Fournier,
Sobolev Spaces Pure and Applied Mathematics Series, 2nd edition, Academic Press, 2003.
![]() ![]() |
|
J. Bourgain
, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994)
, 1-26.
doi: 10.1007/BF02099299.![]() ![]() ![]() |
|
A. de Bouard
and A. Debussche
, On the Stochastic Korteweg-de Vries Equation, J. Func. Anal., 154 (1998)
, 215-251.
doi: 10.1006/jfan.1997.3184.![]() ![]() ![]() |
|
A. de Bouard and A. Debussche, The Korteweg-de Vries equation with multiplicative homogeneous noise, in Stochastic Differential Equations: Theory and Applications (eds. P. H. Baxendale and S. V. Lototsky, Interdisciplinary Math. Sciences, World Scientific, 2 (2007), 113-133.
![]() ![]() |
|
A. de Bouard
, A. Debussche
and Y. Tsutsumi
, White noise driven Korteweg-de Vries Equations, J. Func. Anal., 169 (1999)
, 532-558.
doi: 10.1006/jfan.1999.3484.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R} $ and $ \mathbb{T} $, J. Amer. Math. Soc., 16 (2003)
, 705-749.
![]() ![]() |
|
C. S. Gardner
, Korteweg-de Vries equation and generalizations Ⅳ: The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12 (1971)
, 1548-1551.
doi: 10.1063/1.1665772.![]() ![]() ![]() |
|
T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Lecture Notes in Math. , Springer Verlag, Berlin, 448 (1975), 27-50.
![]() ![]() |
|
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud. , 8 (1983), Academic Press, New York, 93-128.
![]() ![]() |
|
C. E. Kenig
, G. Ponce
and L. Vega
, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991)
, 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.![]() ![]() ![]() |
|
C. E. Kenig
, G. Ponce
and L. Vega
, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46 (1993)
, 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
|
T. Oh
, Periodic stochastic Korteweg-de Vries equation with additive space-time noise, Analysis & PDE, 2 (2009)
, 281-304.
doi: 10.2140/apde.2009.2.281.![]() ![]() ![]() |
|
G. Richards
, Well-posedness of the stochastic KdV-Burgers equation, Stochastic Processes and their Applications, 124 (2014)
, 1627-1647.
doi: 10.1016/j.spa.2013.12.008.![]() ![]() ![]() |
|
R. Temam
, Sur un problème non linéaire, J. Math. Pures Appl., 48 (1969)
, 159-172.
![]() ![]() |
|
P. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, 1756. Springer-Verlag, Berlin, 2001.
![]() ![]() |