In this paper, we investigate global existence and asymptotic behavior of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain with no-slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in $H^2(Ω)$ . Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
Citation: |
[1] |
R. A. Adams,
Sobolev Space, Academic Press, New York, 1975.
![]() ![]() |
[2] |
C. E. Brennen,
Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005.
doi: 10.1017/CBO9780511807169.![]() ![]() |
[3] |
R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity, Indiana Univ. Math. J., 5 (2008), 2299-2319.
doi: 10.1512/iumj.2008.57.3326.![]() ![]() ![]() |
[4] |
S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175-210.
doi: 10.1016/j.jcp.2003.07.001.![]() ![]() |
[5] |
S. Evje, T. Flåtten and H. A. Friis, Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum, Nonlinear Anal., 70 (2009), 3864-3886.
doi: 10.1016/j.na.2008.07.043.![]() ![]() ![]() |
[6] |
S. Evje and K. H. Karlsen, Global existence of weak solutions for a viscous two-phase model, J. Differential Equations, 245 (2008), 2660-2703.
doi: 10.1016/j.jde.2007.10.032.![]() ![]() ![]() |
[7] |
S. Evje and K. H. Karlsen, Global weak solutions for a viscous liquid-gas model with singular pressure law, Commun. Pure Appl. Anal., 8 (2009), 1867-1894.
doi: 10.3934/cpaa.2009.8.1867.![]() ![]() ![]() |
[8] |
S. Evje and T. Flåtten, On the wave structure of two-phase flow models, SIAM J. Appl. Math., 67 (2006/07), 487-511.
![]() ![]() |
[9] |
S. Evje, Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells, SIAM J. Appl. Math., 43 (2011), 1887-1922.
doi: 10.1137/100813932.![]() ![]() ![]() |
[10] |
S. Evje, Global weak solutions for a compressible gas-liquid model with well-formation interaction, J. Differential Equations, 251 (2011), 2352-2386.
doi: 10.1016/j.jde.2011.07.013.![]() ![]() ![]() |
[11] |
L. Fan, Q. Q. Liu and C. J. Zhu, Convergence rates to stationary solutions of a gas-liquid model with external forces, Nonlinearity, 25 (2012), 2875-2901.
doi: 10.1088/0951-7715/25/10/2875.![]() ![]() ![]() |
[12] |
H. A. Friis, S. Evje and T. Flåtten, A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model, Adv. Appl. Math. Mech., 1 (2009), 166-200.
![]() ![]() |
[13] |
Z. H. Guo, J. Yang and L. Yao, Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum, J. Math. Phys., 52 (2011), 093102, 14pp.
![]() ![]() |
[14] |
C. C. Hao and H. L. Li, Well-posedness for a multidimensional viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 1304-1332.
doi: 10.1137/110851602.![]() ![]() ![]() |
[15] |
X. F. Hou and H. Y. Wen, A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow model with vacuum in 3D, Nonlinear Anal., 75 (2012), 5229-5237.
doi: 10.1016/j.na.2012.04.039.![]() ![]() ![]() |
[16] |
M. Ishii,
Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975.
![]() |
[17] |
Y. Kagei and S. Kawashima, Local solvability of initial boundary value problem for a quasilinear hyperbolic-parabolic system, J. Hyperbolic Differ. Equ., 3 (2006), 195-232.
doi: 10.1142/S0219891606000768.![]() ![]() ![]() |
[18] |
Q. Q. Liu and C. J. Zhu, Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum, J. Differential Equations, 252 (2012), 2492-2519.
doi: 10.1016/j.jde.2011.10.018.![]() ![]() ![]() |
[19] |
T. P. Liu and Y. Zeng, Compressible Navier-Stokes equations with zero heat conductivity, J. Differential Equations, 153 (1999), 225-291.
doi: 10.1006/jdeq.1998.3554.![]() ![]() ![]() |
[20] |
A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys., 89 (1983), 445-464.
![]() ![]() |
[21] |
H. Y. Wen, L. Yao and C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204-229.
doi: 10.1016/j.matpur.2011.09.005.![]() ![]() ![]() |
[22] |
L. Yao and C. J. Zhu, Free boundary value problem for a viscous two-phase model with mass-dependent viscosity, J. Differential Equations., 247 (2009), 2705-2739.
doi: 10.1016/j.jde.2009.07.013.![]() ![]() ![]() |
[23] |
L. Yao and C. J. Zhu, Existence and uniqueness of global weak solution to a two-phase flow model with vacuum, Math. Ann., 349 (2011), 903-928.
doi: 10.1007/s00208-010-0544-0.![]() ![]() ![]() |
[24] |
L. Yao, T. Zhang and C. J. Zhu, Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 42 (2010), 1874-1897.
doi: 10.1137/100785302.![]() ![]() ![]() |
[25] |
L. Yao, T. Zhang and C. J. Zhu, A blow-up criterion for a 2D viscous liquid-gas two-phase flow model, J. Differential Equations, 250 (2011), 3362-3378.
doi: 10.1016/j.jde.2010.12.006.![]() ![]() ![]() |
[26] |
L. Yao, C. J. Zhu and R. Z. Zi, Incompressible limit of viscous liquid-gas two-phase flow model, SIAM J. Math. Anal., 44 (2012), 3324-3345.
doi: 10.1137/120862120.![]() ![]() ![]() |
[27] |
L. Yao, J. Yang and Z. H. Guo, Blow-up criterion for 3D viscous liquid-gas two-phase flow model, J. Math. Anal. Appl., 395 (2012), 175-190.
doi: 10.1016/j.jmaa.2012.05.018.![]() ![]() ![]() |
[28] |
Y. H. Zhang and C. J. Zhu, Global existence and optimal convergence rates for the strong solutions in $H^2$ to the 3D viscous liquid-gas two-phase flow model, J. Differential Equations, 258 (2015), 2315-2338.
doi: 10.1016/j.jde.2014.12.008.![]() ![]() ![]() |
[29] |
W. Ziemer,
Weakly Differentiable Functions, Springer, Berlin, 1989.
![]() ![]() |