[1]
|
V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics. Springer-Verlag, Berlin, 2008.
|
[2]
|
A. Agosti, L. Formaggia and A. Scotti, Analysis of a model for precipitation and dissolution coupled with a Darcy flux, Journal of Mathematical Analysis and Applications, 431 (2015), 752-781.
doi: 10.1016/j.jmaa.2015.06.003.
|
[3]
|
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti, Numerical simulation of geochemical compaction with discontinuous reactions, in Coupled Problems 2015 - Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering, 2015, 300-311.
|
[4]
|
A. Agosti, B. Giovanardi, L. Formaggia and A. Scotti, A numerical procedure for geochemical compaction in the presence of discontinuous reaction, Advances in Water Resources, 94 (2016), 332-344.
doi: 10.1016/j.advwatres.2016.06.001.
|
[5]
|
I. Arango and J. Taborda, Numerical analysis of sliding dynamics in three-dimensional Filippov systems using SPTI method, International Journal of Mathematical Models and Method in Applied Sciences, 2 (2008), 342-354.
|
[6]
|
I. Arango and J. Taborda, Integration-free analysis of nonsmooth local dynamics in planar Filippov systems, International Journal of Bifurcation and Chaos, 19 (2009), 947-975.
doi: 10.1142/S0218127409023391.
|
[7]
|
I. Arango and J. Taborda, Topological classification of limit cycles of piecewise smooth dynamical systems and its associated non-standard bifurcations, Entropy, 16 (2014), 1949-1968.
doi: 10.3390/e16041949.
|
[8]
|
M. Berardi and L. Lopez, On the continuous extension of Adams - Bashforth methods and the event location in discontinuous ODEs, Applied Mathematics Letters, 25 (2012), 995-999.
doi: 10.1016/j.aml.2011.11.014.
|
[9]
|
M.-D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511543241.
|
[10]
|
M. Calvo, J. Montijano and L. Rández, On the solution of discontinuous IVPs by adaptive Runge-Kutta codes, Numerical Algorithms, 33 (2003), 163-182.
doi: 10.1023/A:1025507920426.
|
[11]
|
M. Calvo, J. I. Montijano and L. Rández, Algorithm 968: Disode45: A matlab runge-kutta solver for piecewise smooth ivps of filippov type, ACM Trans. Math. Softw., 43 (2017), Art.25, 14 pp.
doi: 10.1145/2907054.
|
[12]
|
R. Casey, H. deJong and J. Gouze, Piecewise-linear models of genetics regulatory networks: Equilibria and their stability, Journal Mathematical Biology, 52 (2006), 27-56.
doi: 10.1007/s00285-005-0338-2.
|
[13]
|
R. Cavoretto, A. DeRossi, E. Perracchione and E. Venturino, Robust approximation algorithms for the detection of attraction basins in dynamical systems, J. Sci. Comput., 68 (2016), 395-415.
doi: 10.1007/s10915-015-0143-z.
|
[14]
|
A. Colombo and U. Galvanetto, Stable manifolds of saddles in piecewise smooth systems, Computer Modeling in Engineering & Sciences, 53 (2009), 235-254.
|
[15]
|
A. Colombo and U. Galvanetto, Computation of the basins of attraction in non-smooth dynamical systems, in Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, held Aberdeen, UK, 27-30 July 2010 (eds. M. Wiercigroch and G. Rega), vol. 32, Springer Science, 2013, 17-29.
|
[16]
|
A. Colombo and M.R. Jeffrey, Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM Journal on Applied Dynamical Systems, 10 (2011), 423-451.
doi: 10.1137/100801846.
|
[17]
|
A. Colombo and M.R. Jeffrey, The two-fold singularity of nonsmooth flows: Leading order dynamics in n-dimensions, Physica D, 263 (2013), 1-10.
doi: 10.1016/j.physd.2013.07.015.
|
[18]
|
N. DelBuono, C. Elia and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for piecewise-linear models of gene regulatory networks, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1270-1292.
doi: 10.1137/130950483.
|
[19]
|
N. DelBuono and L. Lopez, Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Applied Mathematics Letters, 49 (2015), 152-158.
doi: 10.1016/j.aml.2015.05.012.
|
[20]
|
F. Dercole and Y.A. Kuznetsov, SlideCont: An Auto97 driver for bifurcation analysis of filippov systems, ACM Trans. Math. Softw., 31 (2005), 95-119.
doi: 10.1145/1055531.1055536.
|
[21]
|
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet and B. Sautois, MATCONT and CL MATCONT: Continuation toolboxes in Matlab, december 2006 edition, 2006, URL http://www.ricam.oeaw.ac.at/people/page/jameslu/Teaching/MathModelBioSciences_Summer08/EX3/MATCONT_manual.pdf.
|
[22]
|
A. Dhooge, W. Govaerts and Y.A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29 (2003), 141-164.
doi: 10.1145/779359.779362.
|
[23]
|
L. Dieci, C. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb R^3$ and implications for stability of periodic orbits, Journal of Nonlinear Science, 25 (2015), 1453-1471.
doi: 10.1007/s00332-015-9265-6.
|
[24]
|
L. Dieci and L. Lopez, Fundamental matrix solutions of piecewise smooth differential systems, Mathematics and Computers in Simulation, 81 (2011), 932-953.
doi: 10.1016/j.matcom.2010.10.012.
|
[25]
|
L. Dieci and L. Lopez, One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT Numerical Mathematics, 55 (2015), 987-1003.
doi: 10.1007/s10543-014-0538-5.
|
[26]
|
C. Erazo, M. E. Homer, P. T. Piiroinen and M Di Bernardo, Dynamic cell mapping algorithm for computing basins of attraction in planar filippov systems, International Journal of Bifurcation and Chaos, 27 (2017), 1730041, 15PP.
doi: 10.1142/S0218127417300415.
|
[27]
|
G. F. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.
doi: 10.1142/6437.
|
[28]
|
A. Filippov, Differential Equations with Discontinuous Right Hand Side, Kluwer, Dordrecht, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9.
|
[29]
|
U. Galvanetto, Computation of the separatrix of basins of attraction in a non-smooth dynamical system, Physica D, 237 (2008), 2263-2271.
doi: 10.1016/j.physd.2008.02.009.
|
[30]
|
M. Gameiro, J.-P. Lessard and A. Pugliese, Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions, Foundations of Computational Mathematics, 16 (2016), 531-575.
doi: 10.1007/s10208-015-9259-7.
|
[31]
|
W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, 2000.
doi: 10.1137/1.9780898719543.
|
[32]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05018-7.
|
[33]
|
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, Surface reconstruction from unorganized points, SIGGRAPH Comput. Graph., 26 (1992), 71-78.
doi: 10.1145/133994.134011.
|
[34]
|
L. Lopez and S. Maset, Time transfomations for the event location of discontinuous ODEs, Math. Comp, Published electronically December 26, 2017
doi: 10.1090/mcom/3305.
|
[35]
|
J.-M. Melenk and I. Bubuska, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139 (1996), 289-314.
doi: 10.1016/S0045-7825(96)01087-0.
|
[36]
|
B.-S. Morse, T.-S. Yoo, P. Rheingans, D.-T. Chen and K.-R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in Proceedings of International Conference on Shape Modeling and Applications. Genova, Italy May 7-11, 2001, IEEE, 2001, 72-89.
|
[37]
|
P. T. Piiroinen and Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software, 34 (2008), Art. 13, 24 pp.
doi: 10.1145/1356052.1356054.
|
[38]
|
E. Plathe and S. Kjoglum, Analysis and genetic properties of gene regulatory networks with graded response functions, Physica D, 201 (2005), 150-176.
doi: 10.1016/j.physd.2004.11.014.
|
[39]
|
A. Tornambé, Modelling and control of impact in mechanical systems: Theory and experimental results, IEEE Trans. Automat. Control, 44 (1999), 294-309.
doi: 10.1109/9.746255.
|
[40]
|
G. Turk and J. F. O'Brien, Modelling with implicit surfaces that interpolate, ACM Trans. Graph., 21 (2002), 855-873.
doi: 10.1145/1198555.1198640.
|
[41]
|
H. Wendland, Scattered Data Approximation. Cambridge Monogr. Appl. Comput. Math., Cambridge Univ. Press, Cambridge, 2005.
|
[42]
|
H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in Approximation Theory X: Wavelets, Splines, and Applications, Vanderbilt University Press, 2002, 473-483.
|