We consider the Bresse system with three control boundary conditions of fractional derivative type. We prove the polynomial decay result with an estimation of the decay rates. Our result is established using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov.
Citation: |
[1] |
M. S. Alves, O. Vera, J. M. Rivera and A. Rambaudm, Exponential stability to the bresse system with boundary dissipation conditions, arXiv: 150601657A.
![]() |
[2] |
W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852.
doi: 10.1090/S0002-9947-1988-0933321-3.![]() ![]() ![]() |
[3] |
R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to
viscoelasticity, J. Rheology., 27 (1983), 201-210.
![]() |
[4] |
R. L. Bagley and P. J. Torvik, A different approach to the analysis of viscoelastically damped
structures, AIAA J., 21 (1983), 741-748.
![]() |
[5] |
R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior
of real material, J. Appl. Mech., 51 (1983), 294-298.
doi: 10.1115/1.3167615.![]() ![]() |
[6] |
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.
doi: 10.1007/s00208-009-0439-0.![]() ![]() ![]() |
[7] |
J. A. C. Bresse,
Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859.
![]() |
[8] |
H. Brézis,
Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces De Hilbert, Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973.
![]() ![]() |
[9] |
M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates
for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Equa., 236 (2007), 407-459.
doi: 10.1016/j.jde.2007.02.004.![]() ![]() ![]() |
[10] |
J. U. Choi and R. C. Maccamy, Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139 (1989), 448-464.
doi: 10.1016/0022-247X(89)90120-0.![]() ![]() ![]() |
[11] |
A. Haraux, Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics,
Pitman: Boston, MA, 122 (1985), 161–179.
![]() ![]() |
[12] |
J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078.![]() ![]() ![]() |
[13] |
V. Komornik,
Exact Controllability and Stabilization. The Multiplier Method, Masson-John Wiley, Paris, 1994.
![]() ![]() |
[14] |
F. Mainardi and E. Bonetti, The applications of real order derivatives in linear viscoelasticity, Rheol. Acta, 26 (1988), 64-67.
![]() |
[15] |
B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematical Control and Information., 23 (2006), 237-257.
doi: 10.1093/imamci/dni056.![]() ![]() ![]() |
[16] |
B. Mbodje and G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Transactions on Automatic Control., 40 (1995), 368-382.
doi: 10.1109/9.341815.![]() ![]() ![]() |
[17] |
S. A. Messaoudi and M. I. Mustapha, On the internal and boundary stabilization of Timoshenko beams, Nonlinear Differ. Equ. Appl., 15 (2008), 655-671.
doi: 10.1007/s00030-008-7075-3.![]() ![]() ![]() |
[18] |
S. A. Messaoudi and M. I. Mustapha, On the stabilization of the Timochenko system by a
weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047.![]() ![]() ![]() |
[19] |
J. H. Park and J. R. Kang, Energy decay of solutions for Timoshenko beam with a weak
non-linear dissipation, IMA J. Appl. Math., 76 (2011), 340-350.
doi: 10.1093/imamat/hxq040.![]() ![]() ![]() |
[20] |
C.A. Raposo, J. Ferreira, J. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings, ppl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017.![]() ![]() ![]() |
[21] |
Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. Angew. Math. Phys., 60 (2009), 54-69.
doi: 10.1007/s00033-008-6122-6.![]() ![]() ![]() |
[22] |
I. Podlubny,
Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic Press.
![]() ![]() |
[23] |
J. Pruss, On the spectrum of C0-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857.
doi: 10.2307/1999112.![]() ![]() ![]() |
[24] |
J. A. Soriano, W. Charles and R. Schulz, Asymptotic stability for Bresse systems, J. Math. Anal. Appl., 412 (2014), 369-380.
doi: 10.1016/j.jmaa.2013.10.019.![]() ![]() ![]() |
[25] |
C. Wagschal,
Fonctions Holomorphes - Equations Différentielles : Exercices Corrigés, Herman, Paris, 2003.
![]() |