December  2018, 23(10): 4595-4616. doi: 10.3934/dcdsb.2018178

Time-dependent asymptotic behavior of the solution for plate equations with linear memory

School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author

Received  September 2017 Revised  January 2018 Published  December 2018 Early access  June 2018

Fund Project: Ma is supported by NSF grant(11561064, 11361053), and partly supported by NWNU-LKQN-14-6.

In this article, we consider the long-time behavior of solutions for the plate equation with linear memory. Within the theory of process on time-dependent spaces, we investigate the existence of the time-dependent attractor by using the operator decomposition technique and compactness of translation theorem and more detailed estimates. Furthermore, the asymptotic structure of time-dependent attractor, which converges to the attractor of fourth order parabolic equation with memory, is proved. Besides, we obtain a further regular result.

Citation: Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1994. doi: 10.1007/978-1-4612-0873-0.

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.

[3]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.

[4]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equations with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[5]

M. ContiV. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.

[6]

M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 19 (2014), 1-10.  doi: 10.1016/j.nonrwa.2014.02.002.

[7]

M. Conti and V. Pata, On the time-dependent Cattaneo law in space dimension one, Applied Mathematic and Computation, 259 (2015), 32-44.  doi: 10.1016/j.amc.2015.02.039.

[8]

F. Di PlinioG. S. Duane and R. Temam, Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.

[9]

A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832.  doi: 10.1016/j.aml.2004.08.013.

[10]

A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differential Equations, 225 (2006), 528-548.  doi: 10.1016/j.jde.2005.12.001.

[11]

T. T. Liu and Q. Z. Ma, Existence of time-dependent global attractors for plate equation, J. East China Normal University(Chinese), 2 (2016), 35-44. 

[12]

T. T. Liu and Q. Z. Ma, The existence of time-dependent strong pullback attractors for nonautonomous plate equations, Chinese Annals of Mathematics(Chinese), 38 (2017), 125-144; Chinese Journal of Contemporary Mathematics(English), 2 (2017), 101-118.

[13]

Q. Z. MaY. Yang and X. L. Zhang, Existence of exponential attractors for the plate equations with strong damping, Elec. J. Differential Equations, 114 (2013), 1-10. 

[14]

W. J. Ma and Q. Z. Ma, Attractors for stochastic strongly damped plate equation with additive noise, Elec. J. Differential Equations, 111 (2013), 1-12. 

[15]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.

[16]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. B., 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.

[17]

F. J. Meng and C. C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58(2017), 032702, 9 pp. doi: 10.1063/1.4978329.

[18]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[19]

G. S. Sell and Y. You, Dynamics of Evolution Equations, Springer-Verlag, New York, 2002.

[20]

J. Simon, Compact sets in the space LP (0; T; B), Ann. Math. Pura. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[21]

S. Woinowsky, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. 

[22]

H. B. Xiao, Asymptotic dynamtics of plate equation with a critical exponent on unbounded domain, Nonlinear Analysis, 70 (2009), 1288-1301.  doi: 10.1016/j.na.2008.02.012.

[23]

H. B. Xiao, Compact attractors of fourth order parabolic equation on Rn, Applied Mathematic and Computation, 219 (2013), 9827-9837.  doi: 10.1016/j.amc.2013.03.121.

[24]

L. Yang and C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis, 69 (2008), 3802-3810.  doi: 10.1016/j.na.2007.10.016.

[25]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J.Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1994. doi: 10.1007/978-1-4612-0873-0.

[2]

J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.  doi: 10.1016/0022-247X(73)90121-2.

[3]

J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.  doi: 10.1016/0022-0396(73)90056-9.

[4]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equations with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[5]

M. ContiV. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.

[6]

M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 19 (2014), 1-10.  doi: 10.1016/j.nonrwa.2014.02.002.

[7]

M. Conti and V. Pata, On the time-dependent Cattaneo law in space dimension one, Applied Mathematic and Computation, 259 (2015), 32-44.  doi: 10.1016/j.amc.2015.02.039.

[8]

F. Di PlinioG. S. Duane and R. Temam, Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.

[9]

A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832.  doi: 10.1016/j.aml.2004.08.013.

[10]

A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differential Equations, 225 (2006), 528-548.  doi: 10.1016/j.jde.2005.12.001.

[11]

T. T. Liu and Q. Z. Ma, Existence of time-dependent global attractors for plate equation, J. East China Normal University(Chinese), 2 (2016), 35-44. 

[12]

T. T. Liu and Q. Z. Ma, The existence of time-dependent strong pullback attractors for nonautonomous plate equations, Chinese Annals of Mathematics(Chinese), 38 (2017), 125-144; Chinese Journal of Contemporary Mathematics(English), 2 (2017), 101-118.

[13]

Q. Z. MaY. Yang and X. L. Zhang, Existence of exponential attractors for the plate equations with strong damping, Elec. J. Differential Equations, 114 (2013), 1-10. 

[14]

W. J. Ma and Q. Z. Ma, Attractors for stochastic strongly damped plate equation with additive noise, Elec. J. Differential Equations, 111 (2013), 1-12. 

[15]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.

[16]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. B., 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.

[17]

F. J. Meng and C. C. Liu, Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 58(2017), 032702, 9 pp. doi: 10.1063/1.4978329.

[18]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[19]

G. S. Sell and Y. You, Dynamics of Evolution Equations, Springer-Verlag, New York, 2002.

[20]

J. Simon, Compact sets in the space LP (0; T; B), Ann. Math. Pura. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[21]

S. Woinowsky, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. 

[22]

H. B. Xiao, Asymptotic dynamtics of plate equation with a critical exponent on unbounded domain, Nonlinear Analysis, 70 (2009), 1288-1301.  doi: 10.1016/j.na.2008.02.012.

[23]

H. B. Xiao, Compact attractors of fourth order parabolic equation on Rn, Applied Mathematic and Computation, 219 (2013), 9827-9837.  doi: 10.1016/j.amc.2013.03.121.

[24]

L. Yang and C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis, 69 (2008), 3802-3810.  doi: 10.1016/j.na.2007.10.016.

[25]

L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J.Math. Anal. Appl., 338 (2008), 1243-1254.  doi: 10.1016/j.jmaa.2007.06.011.

[1]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[2]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[3]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[4]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[5]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[6]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[7]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[8]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[9]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[10]

Penghui Zhang, Zhaosheng Feng, Lu Yang. Non-autonomous weakly damped plate model on time-dependent domains. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3319-3336. doi: 10.3934/dcdss.2021076

[11]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[12]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[13]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems and Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[14]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[15]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[16]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[17]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088

[18]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090

[19]

Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114

[20]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (311)
  • HTML views (406)
  • Cited by (2)

Other articles
by authors

[Back to Top]