In this short paper we study the existence and uniqueness of solutions of free boundary problems coming from ecology in heterogeneous environments.
Citation: |
J. F. Cao
, W. T. Li
and M. Zhao
, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017)
, 1015-1035.
doi: 10.1016/j.jmaa.2016.12.044.![]() ![]() ![]() |
|
Q. L. Chen
, F. Q. Li
and F. Wang
, The diffusive competition problem with a free boundary in heterogeneous time-periodic environment, J. Math. Anal. Appl., 433 (2016)
, 1594-1613.
doi: 10.1016/j.jmaa.2015.08.062.![]() ![]() ![]() |
|
Q. L. Chen
, F. Q. Li
and F. Wang
, A reaction-diffusion-advection competition model with two free boundaries in heterogeneous time-periodic environment, IMA J. Appl. Math., 82 (2017)
, 445-470.
doi: 10.1093/imamat/hxw059.![]() ![]() ![]() |
|
Y. H. Du
and Z. G. Lin
, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010)
, 377-405.
doi: 10.1137/090771089.![]() ![]() ![]() |
|
C. X. Lei
and Y. H. Du
, Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model, Discrete Contin. Dyn. Syst. B, 22 (2017)
, 895-911.
doi: 10.3934/dcdsb.2017045.![]() ![]() ![]() |
|
H. Monobe
and C-H. Wu
, On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment, J. Differential Equations, 261 (2016)
, 6144-6177.
doi: 10.1016/j.jde.2016.08.033.![]() ![]() ![]() |
|
J. Wang
and L. Zhang
, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015)
, 377-398.
doi: 10.1016/j.jmaa.2014.09.055.![]() ![]() ![]() |
|
M. X. Wang, Sobolev Spaces, (in Chinese), Higher Education Press, Bejing, 2013.
![]() |
|
M. X. Wang
, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015)
, 1252-1266.
doi: 10.1016/j.jde.2014.10.022.![]() ![]() ![]() |
|
M. X. Wang
, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016)
, 483-508.
doi: 10.1016/j.jfa.2015.10.014.![]() ![]() ![]() |
|
M. X. Wang, Nonlinear Second Order Parabolic Equations, in: Lecture Notes.
![]() |
|
M. X. Wang and Y. Zhang, The time-periodic diffusive competition models with a free boundary and sign-changing growth rates, Z. Angew. Math. Phys., 67 (2016), Art. 132, 24 pp.
doi: 10.1007/s00033-016-0729-9.![]() ![]() ![]() |
|
M. X. Wang
and J. F. Zhao
, A free boundary problem for a predator-prey model with double free boundaries, J. Dyn. Diff. Equat., 29 (2017)
, 957-979.
doi: 10.1007/s10884-015-9503-5.![]() ![]() ![]() |
|
J. F. Zhao
and M. X. Wang
, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal.: Real World Appl., 16 (2014)
, 250-263.
doi: 10.1016/j.nonrwa.2013.10.003.![]() ![]() ![]() |
|
M. Zhao
, W. T. Li
and J. F. Cao
, A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment, Discrete Cont. Dyn. Syst. B, 22 (2017)
, 3295-3316.
doi: 10.3934/dcdsb.2017138.![]() ![]() ![]() |
|
Y. G. Zhao
and M. X. Wang
, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016)
, 255-280.
doi: 10.1093/imamat/hxv035.![]() ![]() ![]() |
|
L. Zhou
, S. Zhang
and Z. H. Liu
, An evolutional free-boundary problem of a reaction-diffusion-advection system, Proc. Royal Soc. Edinburgh A, 147 (2017)
, 615-648.
doi: 10.1017/S0308210516000226.![]() ![]() ![]() |