We consider an attraction-repulsion chemotaxis model coupled with the Navier-Stokes system. This model describes the interaction between a type of cells (e.g., bacteria), which proliferate following a logistic law, and two chemical signals produced by the cells themselves that degraded at a constant rate. Also, it is considered that the chemoattractant is consumed with a rate proportional to the amount of organisms. The cells and chemical substances are transported by a viscous incompressible fluid under the influence of a force due to the aggregation of cells. We prove the existence of global mild solutions in bounded domains of $\mathbb{R}^N,$ $N = 2, 3,$ for small initial data in $L^p$-spaces.
Citation: |
M. Aida
, K. Osaki
, T. Tsujikawa
, A. Yagi
and M. Mimura
, Chemotaxis and growth system with singular sensitivity function, Nonlinear Analysis: Real World Applications, 6 (2005)
, 323-336.
doi: 10.1016/j.nonrwa.2004.08.011.![]() ![]() ![]() |
|
L. Angiuli
, D. Pallara
and F. Y. Paronetto
, Analytic semigroups generated in L1 by second order elliptic operators via duality methods, Semigroup Forum, Springer, 80 (2010)
, 255-271.
doi: 10.1007/s00233-009-9200-y.![]() ![]() ![]() |
|
N. Bellomo
, A. Bellouquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
M. Braukhoff
, Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 34 (2017)
, 1013-1039.
doi: 10.1016/j.anihpc.2016.08.003.![]() ![]() ![]() |
|
X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities,
Calc. Var. Partial Differential Equations, 55 (2016), Art. 107, 39 pp.
doi: 10.1007/s00526-016-1027-2.![]() ![]() ![]() |
|
T. Cazenave
and F. B. Weissler
, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Mathematische Zeitschrift, 228 (1998)
, 83-120.
doi: 10.1007/PL00004606.![]() ![]() ![]() |
|
S. Chandrasekhar,
Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics Clarendon Press, Oxford, 1961.
![]() ![]() |
|
M.A. Chaplain
and G. Lolas
, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Mathematical Models and Methods in Applied Sciences, 15 (2005)
, 1685-1734.
doi: 10.1142/S0218202505000947.![]() ![]() ![]() |
|
M. A. Chaplain
and A. Stuart
, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, Mathematical Medicine and Biology, 10 (1993)
, 149-168.
doi: 10.1093/imammb/10.3.149.![]() ![]() |
|
A. Chertock
, K. Fellner
, A. Kurganov
, A. Lorz
and P. Markowich
, Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, Journal of Fluid Mechanics, 694 (2012)
, 155-190.
doi: 10.1017/jfm.2011.534.![]() ![]() ![]() |
|
H. J. Choe
and B. Lkhagvasuren
, Global existence result for chemotaxis Navier-Stokes equations in the critical Besov spaces, Journal of Mathematical Analysis and Applications, 446 (2017)
, 1415-1426.
doi: 10.1016/j.jmaa.2016.09.050.![]() ![]() ![]() |
|
C. Dombrowski
, L. Cisneros
, S. Chatkaew
, R. E. Goldstein
and J. O. Kessler
, Self-concentration and large-scale coherence in bacterial dynamics, Physical Review Letters, 93 (2004)
, 98-103.
![]() |
|
R. Duan
and Z. Xiang
, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, International Mathematics Research Notices, 2014 (2012)
, 1833-1852.
doi: 10.1093/imrn/rns270.![]() ![]() ![]() |
|
E. Espejo
and T. Suzuki
, Reaction terms avoiding aggregation in slow fluids, Nonlinear Analysis: Real World Applications, 21 (2015)
, 110-126.
doi: 10.1016/j.nonrwa.2014.07.001.![]() ![]() ![]() |
|
L. C. F. Ferreira
and E. J. Villamizar-Roa
, Self-similar solutions, uniqueness and long-time asymptotic behavior for semilinear heat equations, Differential and Integral Equations, 19 (2006)
, 1349-1370.
![]() ![]() |
|
L. C. F. Ferreira
and E. J. Villamizar-Roa
, Well-posedness and asymptotic behaviour for the convection problem, Nonlinearity, 19 (2006)
, 2169-2191.
doi: 10.1088/0951-7715/19/9/011.![]() ![]() ![]() |
|
D. Fujiwara
and H. Morimoto
, An Lr-theorem of the Helmholtz decomposition of vector fields, IA Math, 24 (1977)
, 685-700.
![]() ![]() |
|
Y. Giga
, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Mathematische Zeitschrift, 178 (1981)
, 297-329.
doi: 10.1007/BF01214869.![]() ![]() ![]() |
|
N. A. Hill
and T. J. Pedley
, Bioconvection, Fluid Dynamics Research, 37 (2005)
, 1-20.
doi: 10.1016/j.fluiddyn.2005.03.002.![]() ![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
T. Hillen
, K. J. Painter
and M. Winkler
, Convergence of a cancer invasion model to a logistic chemotaxis model, Mathematical Models and Methods in Applied Sciences, 23 (2013)
, 165-198.
doi: 10.1142/S0218202512500480.![]() ![]() ![]() |
|
D. Horstmann
, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, Journal of Nonlinear Science, 21 (2011)
, 231-270.
doi: 10.1007/s00332-010-9082-x.![]() ![]() ![]() |
|
S. Ishida
, Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains, Discrete & Continuous Dynamical Systems-A, 35 (2015)
, 3463-3482.
doi: 10.3934/dcds.2015.35.3463.![]() ![]() ![]() |
|
J. Jiang
, H. Wu
and S. Zheng
, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains, Asymptotic Analysis, 92 (2015)
, 249-258.
![]() ![]() |
|
T. Kato
, Strong Lp-solutions of the Navier-Stokes equation in Rm with applications to weak solutions, Math. Z., 187 (1984)
, 471-480.
doi: 10.1007/BF01174182.![]() ![]() ![]() |
|
T. Kato
, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat., 22 (1992)
, 127-155.
doi: 10.1007/BF01232939.![]() ![]() ![]() |
|
A. Kiselev
and L. Ryzhik
, Biomixing by chemotaxis and enhancement of biological reactions, Communications in Partial Differential Equations, 37 (2012)
, 298-318.
doi: 10.1080/03605302.2011.589879.![]() ![]() ![]() |
|
H. Kozono
, M. Miura
and Y. Sugiyama
, Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, Journal of Functional Analysis, 270 (2016)
, 1663-1683.
doi: 10.1016/j.jfa.2015.10.016.![]() ![]() ![]() |
|
J. Lankeit
, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, Journal of Differential Equations, 258 (2015)
, 1158-1191.
doi: 10.1016/j.jde.2014.10.016.![]() ![]() ![]() |
|
J. Lankeit
, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26 (2016)
, 2071-2109.
doi: 10.1142/S021820251640008X.![]() ![]() ![]() |
|
D. Li
, C. Mu
, K. Lin
and L. Wang
, Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, Journal of Mathematical Analysis and Applications, 448 (2016)
, 914-936.
doi: 10.1016/j.jmaa.2016.11.036.![]() ![]() ![]() |
|
X. Li
, Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Mathematical Methods in the Applied Sciences, 39 (2016)
, 289-301.
doi: 10.1002/mma.3477.![]() ![]() ![]() |
|
X. Li
and Z. Xiang
, On an attraction-repulsion chemotaxis system with a logistic source, IMA Journal of Applied Mathematics, 81 (2016)
, 165-198.
doi: 10.1093/imamat/hxv033.![]() ![]() ![]() |
|
J. Liu
and Y. Wang
, Global existence and boundedness in a Keller-Segel-(Navier-) Stokes system with signal-dependent sensitivity, Journal of Mathematical Analysis and Applications, 447 (2017)
, 499-528.
doi: 10.1016/j.jmaa.2016.10.028.![]() ![]() ![]() |
|
J. Liu
and Y. Wang
, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation, Journal of Differential Equations, 262 (2017)
, 5271-5305.
doi: 10.1016/j.jde.2017.01.024.![]() ![]() ![]() |
|
P. Liu
, J. Shi
and Z.-A. Wang
, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013)
, 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597.![]() ![]() ![]() |
|
M. Luca
, A. Chavez-Ross
, L. Edelstein-Keshet
and A. Mogilner
, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65 (2003)
, 693-730.
doi: 10.1016/S0092-8240(03)00030-2.![]() ![]() |
|
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser/Springer Basel AG, Basel, 1995.
![]() ![]() |
|
N. V. Mantzaris
, S. Webb
and H. G. Othmer
, Mathematical modeling of tumor-induced angiogenesis, Journal of Mathematical Biology, 49 (2004)
, 111-187.
doi: 10.1007/s00285-003-0262-2.![]() ![]() ![]() |
|
X. Mora
, Semilinear parabolic problems define semiflows on Ck spaces, Transactions of the American Mathematical Society, 278 (1983)
, 21-55.
doi: 10.2307/1999300.![]() ![]() ![]() |
|
A. Quinlan
and B. Straughan
, Decay bounds in a model for aggregation of microglia: Application to Alzheimer's disease senile plaques, Proceedings of the Royal Society A, 461 (2005)
, 2887-2897.
doi: 10.1098/rspa.2005.1483.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 30 (2013)
, 157-178.
doi: 10.1016/j.anihpc.2012.07.002.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Zeitschrift für angewandte Mathematik und Physik, 66 (2015)
, 2555-2573.
doi: 10.1007/s00033-015-0541-y.![]() ![]() ![]() |
|
Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system Z. Angew. Math. Phys., 67 (2016), Art. 138, 23 pp.
doi: 10.1007/s00033-016-0732-1.![]() ![]() ![]() |
|
J. I. Tello
and M. Winkler
, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007)
, 849-877.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
|
I. Tuval
, L. Cisneros
, C. Dombrowski
, C. W. Wolgemuth
, J. O. Kessler
and R. E. Goldstein
, Bacterial swimming and oxygen transport near contact lines, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005)
, 2277-2282.
doi: 10.1073/pnas.0406724102.![]() ![]() |
|
R. Tyson
, S. R. Lubkin
and J. D. Murray
, Model and analysis of chemotactic bacterial patterns in a liquid medium, Journal of Mathematical Biology, 38 (1999)
, 359-375.
doi: 10.1007/s002850050153.![]() ![]() ![]() |
|
Y. Wang
, Boundedness in a three-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion and logistic source, Electronic Journal of Differential Equations, 176 (2016)
, 1-21.
![]() ![]() |
|
Y. Wang
and Z. Xiang
, Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: The 3D case, Journal of Differential Equations, 261 (2016)
, 4944-4973.
doi: 10.1016/j.jde.2016.07.010.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
M. Winkler
, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Communications in Partial Differential Equations, 35 (2010)
, 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
|
M. Winkler
, Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops, Communications in Partial Differential Equations, 37 (2012)
, 319-351.
doi: 10.1080/03605302.2011.591865.![]() ![]() ![]() |
|
M. Winkler
, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, Journal of Differential Equations, 257 (2014)
, 1056-1077.
doi: 10.1016/j.jde.2014.04.023.![]() ![]() ![]() |
|
M. Winkler
, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calculus of Variations and Partial Differential Equations, 54 (2015)
, 3789-3828.
doi: 10.1007/s00526-015-0922-2.![]() ![]() ![]() |
|
M. Winkler
, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 33 (2016)
, 1329-1352.
doi: 10.1016/j.anihpc.2015.05.002.![]() ![]() ![]() |
|
D. Woodward, R. Tyson, M. Myerscough, J. D. Murray, E. Budrene, and H. Berg, Spatio-temporal patterns generated by Salmonella typhimurium Biophysical Journal, 68 (1995), no. 5, 2181.
doi: 10.1016/S0006-3495(95)80400-5.![]() ![]() |
|
Q. Zhang
and Y. Li
, An attraction-repulsion chemotaxis system with logistic source, Biophysical Journal, 96 (2015)
, 570-584.
doi: 10.1002/zamm.201400311.![]() ![]() ![]() |
|
Q. Zhang
and Y. Li
, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion, Journal of Differential Equations, 259 (2015)
, 3730-3754.
doi: 10.1016/j.jde.2015.05.012.![]() ![]() ![]() |
|
P. Zheng
, C. Mu
and X. Hu
, Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Computers & Mathematics with Applications, 72 (2016)
, 2194-2202.
doi: 10.1016/j.camwa.2016.08.028.![]() ![]() ![]() |