|
M. Baurmann
, T. Gross
and U. Feudel
, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of turing-hopf bifurcations, J. Theoret. Biol., 245 (2007)
, 220-229.
doi: 10.1016/j.jtbi.2006.09.036.
|
|
J. Carr, Applications of Centre Manifold Theory, vol. 35, Springer-Verlag, New York-Berlin, 1981.
doi: 10.1007/978-1-4612-5929-9.
|
|
V. Castets, E. Dulos, J. Boissonade and P. D. Kepper, Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64 (1990), 2953.
doi: 10.1103/PhysRevLett.64.2953.
|
|
S. S. Chen, Y. Lou and J. J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differential Equations, 264 (2018), 5333-5359, arXiv: 1706.02087.
doi: 10.1016/j.jde.2018.01.008.
|
|
T. Faria
, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000)
, 2217-2238.
doi: 10.1090/S0002-9947-00-02280-7.
|
|
T. Faria
and L. T. Magalhaes
, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differential Equations, 122 (1995)
, 181-200.
doi: 10.1006/jdeq.1995.1144.
|
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, Springer New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
|
K. P. Hadeler
and S. G. Ruan
, Interaction of diffusion and delay, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007)
, 95-105.
doi: 10.3934/dcdsb.2007.8.95.
|
|
J. R. Huang
, Z. H. Liu
and S. G. Ruan
, Bifurcation and temporal periodic patterns in a plant-pollinator model with diffusion and time delay effects, J. Biol. Dyn., 11 (2017)
, 138-159.
doi: 10.1080/17513758.2016.1181802.
|
|
R. E. Kooij
, J. T. Arus
and A. G. Embid
, Limit cycles in the holling-tanner model, Publ. Mat., 41 (1997)
, 149-167.
doi: 10.5565/PUBLMAT_41197_09.
|
|
I. Lengyel
and I. R. Epstein
, Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991)
, 650-652.
doi: 10.1126/science.251.4994.650.
|
|
W. T. Li
, G. Lin
and S. G. Ruan
, Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems, Nonlinearity, 19 (2006)
, 1253-1273.
doi: 10.1088/0951-7715/19/6/003.
|
|
X. D. Lin
, J. W. H. So
and J. H. Wu
, Centre manifolds for partial differential equations with delays, Proc. Roy. Soc. Edinburgh, 122 (1992)
, 237-254.
doi: 10.1017/S0308210500021090.
|
|
P. K. Maini
, K. J. Painter
and H. N. P. Chau
, Spatial pattern formation in chemical and biological systems, J. Chem. Soc. Faraday Trans., 93 (1997)
, 3601-3610.
doi: 10.1039/a702602a.
|
|
R. H. Martin
and H. L. Smith
, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence, J. Reine Angew. Math., 413 (1991)
, 1-35.
doi: 10.1515/crll.1991.413.1.
|
|
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, 2003.
|
|
Q. Ouyang
and H. L. Swinney
, Transition from a uniform state to hexagonal and striped turing patterns, Nature, 352 (1991)
, 610-612.
doi: 10.1038/352610a0.
|
|
C. V. Pao
, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996)
, 751-779.
doi: 10.1006/jmaa.1996.0111.
|
|
C. V. Pao
, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Anal., 48 (2002)
, 349-362.
doi: 10.1016/S0362-546X(00)00189-9.
|
|
A. Rovinsky
and M. Menzinger
, Interaction of turing and hopf bifurcations in chemical systems, Phys. Rev. A, 46 (1992)
, 6315-6322.
doi: 10.1103/PhysRevA.46.6315.
|
|
E. Sáez
and E. González-Olivares
, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59 (1999)
, 1867-1878.
doi: 10.1137/S0036139997318457.
|
|
L. A. Segel
and J. L. Jackson
, Dissipative structure: An explanation and an ecological example, J. Theoret. Biol., 37 (1972)
, 545-559.
doi: 10.1016/0022-5193(72)90090-2.
|
|
H. B. Shi
and S. G. Ruan
, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80 (2015)
, 1534-1568.
doi: 10.1093/imamat/hxv006.
|
|
C. C. Travis
and G. F. Webb
, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200 (1974)
, 395-418.
doi: 10.2307/1997265.
|
|
A. M. Turing
, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952)
, 37-72.
doi: 10.1098/rstb.1952.0012.
|
|
H. B. Wang
and W. H. Jiang
, Hopf-pitchfork bifurcation in van der Pol's oscillator with nonlinear delayed feedback, J. Math. Anal. Appl., 368 (2010)
, 9-18.
doi: 10.1016/j.jmaa.2010.03.012.
|
|
A. D. Wit
, D. Lima
, G. Dewel
and P. Borckmans
, Spatiotemporal dynamics near a codimension-two point, Phys. Rev. E, 54 (1996)
, 261-271.
doi: 10.1103/PhysRevE.54.261.
|
|
J. H. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, 1996.
doi: 10.1007/978-1-4612-4050-1.
|
|
J. H. Wu
and X. F. Zou
, Traveling wave fronts of Reaction-Diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001)
, 651-687.
doi: 10.1023/A:1016690424892.
|
|
X. F. Xu
and J. J. Wei
, Bifurcation analysis of a spruce budworm model with diffusion and physiological structures, J. Differential Equations, 262 (2017)
, 5206-5230.
doi: 10.1016/j.jde.2017.01.023.
|
|
R. Yang
and Y. L. Song
, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal. Real World Appl., 31 (2016)
, 356-387.
doi: 10.1016/j.nonrwa.2016.02.006.
|
|
X. Q. Zhao, Dynamical Systems in Population Biology, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3.
|