This paper is devoted to the existence, uniqueness and stability of bistable traveling waves for a recursive system, which is defined by the iterations of the Ponicaré map of a yearly periodic age-structured population model derived in the companion paper [
Citation: |
X. Chen
, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Advances in Differential Equations, 2 (1997)
, 125-160.
![]() ![]() |
|
R. Coutinho
and B. Fernandez
, Fronts in extended systems of bistable maps coupled via convolutions, Nonlinearity, 17 (2004)
, 23-27.
doi: 10.1088/0951-7715/17/1/002.![]() ![]() ![]() |
|
J. Fang
and X.-Q. Zhao
, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014)
, 3678-3704.
doi: 10.1137/140953939.![]() ![]() ![]() |
|
J. Fang
and X.-Q. Zhao
, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., 17 (2015)
, 2243-2288.
doi: 10.4171/JEMS/556.![]() ![]() ![]() |
|
X. Liang
and X.-Q. Zhao
, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007)
, 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
|
R. Lui
, A nonlinear integral operator arising from a model in population genetics, Ⅰ. Monotone initial data, SIAM J. Math. Anal., 13 (1982)
, 913-937.
doi: 10.1137/0513064.![]() ![]() ![]() |
|
R. Lui
, Existence and stability of traveling wave solutions of a nonlinear integral operator, J. Math. Biology, 16 (1983)
, 199-220.
doi: 10.1007/BF00276502.![]() ![]() ![]() |
|
Y. Pan, J. Fang and J. Wei, Seasonal influence on stage-structured invasive species with yearly generation, SIAM J. Appl. Math., to appear, arXiv: 1712.06241.
![]() |
|
H. L. Smith
and X-Q. Zhao
, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000)
, 514-534.
doi: 10.1137/S0036141098346785.![]() ![]() ![]() |
|
Z. Wang
, W. Li
and S. Ruan
, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, Journal of Differential Equations, 238 (2007)
, 152-200.
doi: 10.1016/j.jde.2007.03.025.![]() ![]() ![]() |
|
H. F. Weinberger
, Long time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982)
, 353-396.
doi: 10.1137/0513028.![]() ![]() ![]() |
|
Y. Zhang
and X-Q. Zhao
, Bistable travelling waves in competitive recursion systems, Journal of Differential Equations, 252 (2012)
, 2630-2647.
doi: 10.1016/j.jde.2011.10.005.![]() ![]() ![]() |
|
Y. Zhang
and X.-Q. Zhao
, Spatial dynamics of a reaction-diffusion model with distributed delay, Math. Model. Nat. Phenom., 8 (2013)
, 60-77.
doi: 10.1051/mmnp/20138306.![]() ![]() ![]() |
|
Y. Zhang
and X-Q. Zhao
, Bistable travelling waves for a reaction and diffusion model with seasonal succession, Nonlinearity, 36 (2013)
, 691-709.
doi: 10.1088/0951-7715/26/3/691.![]() ![]() ![]() |
|
X-Q. Zhao, Dynamical System in Population Biology, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21761-1.![]() ![]() ![]() |