[1]
|
B. Armbruster and E. Beck, Elementary proof of convergence to the mean-field model for the SIR process, Journal of Mathematical Biology, 75 (2017), 327-339.
doi: 10.1007/s00285-016-1086-1.
|
[2]
|
B. Armbruster and E. Beck, An elementary proof of convergence to the mean-field equations for an epidemic model, IMA Journal of Applied Mathematics, 82 (2017), 152-157.
doi: 10.1093/imamat/hxw010.
|
[3]
|
B. Armbruster, A. Besenyei and P. L. Simon, Bounds for the expected value of one-step processes, Commun. Math. Sci., 14 (2016), 1911-1923.
doi: 10.4310/CMS.2016.v14.n7.a6.
|
[4]
|
M. van Baalen, Pair approximations for different spatial geometries, chapter Pair approximations for different spatial geometries, Cambridge University Press, (2000), 359-387.
|
[5]
|
A. Bátkai, I. Z. Kiss, E. Sikolya and P. L. Simon, Differential equation approximations of stochastic network processes: An operator semigroup approach, Netw. Heter. Media, 7 (2012), 43-58.
doi: 10.3934/nhm.2012.7.43.
|
[6]
|
M. Boguná and R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Physical Review E, 66 (2002), 047104.
|
[7]
|
E. Cator and P. Van Mieghem, Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated, Physical Review E, 89 (2014), 052802.
doi: 10.1103/PhysRevE.89.052802.
|
[8]
|
T. E. Harris, Additive set-valued markov processes and graphical methods, The Annals of Probability, 6 (1978), 355-378.
doi: 10.1214/aop/1176995523.
|
[9]
|
M. W. Hirsch and H. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations (eds. A. Canada, P. Drábek and A. Fonda), Elsevier BV Amsterdam, 2 (2005), 239–357.
|
[10]
|
E. Kamke, Zur theorie der systeme gewöhnlicher differentialgleichungen. Ⅱ, Acta Mathematica, 58 (1932), 57-85.
doi: 10.1007/BF02547774.
|
[11]
|
M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proceedings of the Royal Society of London. Series B: Biological Sciences, (2011), 480-488.
doi: 10.1515/9781400841356.480.
|
[12]
|
I. Z. Kiss, J. C. Miller and P. L. Simon,
Mathematics of Network Epidemics: From Exact to Approximate Models, Springer-Verlag, New York, 2017.
doi: 10.1007/978-3-319-50806-1.
|
[13]
|
I. Z. Kiss, C. G. Morris, F. Sélley, P. L. Simon and R. R. Wilkinson, Exact deterministic representation of markovian SIR epidemics on networks with and without loops, Journal of Mathematical Biology, 70 (2015), 437-464.
doi: 10.1007/s00285-014-0772-0.
|
[14]
|
I. Z. Kiss, G. Röst and Z. Vizi, Generalization of pairwise models to non-Markovian epidemics on networks Physical Review Letters, 115 (2015), 078701.
doi: 10.1103/PhysRevLett.115.078701.
|
[15]
|
D. Kunszenti-Kovács and P. L. Simon, Mean-field approximation of counting processes from a differential equation perspective, Electronic Journal of Qualitative Theory of Differential Equations, 2016 (2016), 1-17.
|
[16]
|
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, 28 (1976), 221-236.
doi: 10.1016/0025-5564(76)90125-5.
|
[17]
|
J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, Journal of Mathematical Biology, 62 (2011), 143-164.
doi: 10.1007/s00285-010-0331-2.
|
[18]
|
J. C. Miller, A. C. Slim and E. M. Volz, Edge-based compartmental modelling for infectious disease spread, Journal of the Royal Society Interface, 9 (2012), 890-906.
doi: 10.1007/s00285-012-0572-3.
|
[19]
|
J. C. Miller and E. M. Volz, Model hierarchies in edge-based compartmental modeling for infectious disease spread, Journal of Mathematical Biology, 67 (2013), 869-899.
doi: 10.1007/s00285-012-0572-3.
|
[20]
|
M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, Random Structures & Algorithms, 6 (1995), 161-179.
doi: 10.1002/rsa.3240060204.
|
[21]
|
M. Müller, Über das fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen, Mathematische Zeitschrift, 26 (1927), 619-645.
doi: 10.1007/BF01475477.
|
[22]
|
R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925-979.
doi: 10.1103/RevModPhys.87.925.
|
[23]
|
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters, 86 (2001), 3200-3203.
doi: 10.1515/9781400841356.493.
|
[24]
|
D. A. Rand, Correlation equations and pair approximations for spatial ecologies, in Advanced ecological theory: principles and applications, Oxford: Blackwell Science, (1999), 100–142.
|
[25]
|
K. J. Sharkey, Deterministic epidemic models on contact networks: Correlations and unbiological terms, Theoretical Population Biology, 79 (2011), 115-129.
doi: 10.1016/j.tpb.2011.01.004.
|
[26]
|
K. J. Sharkey, I. Z. Kiss, R. R. Wilkinson and P. L. Simon, Exact equations for SIR epidemics on tree graphs, Bulletin of Mathematical Biology, 77 (2015), 614-645.
doi: 10.1007/s11538-013-9923-5.
|
[27]
|
P. L. Simon, M. Taylor and I. Z. Kiss, Exact epidemic models on graphs using graph-automorphism driven lumping, Journal of Mathematical Biology, 62 (2011), 479-508.
doi: 10.1007/s00285-010-0344-x.
|
[28]
|
H. L. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.
|
[29]
|
J. Szarski,
Differential Inequalities, Instytut Matematyczny Polskiej Akademi Nauk (Warszawa), 1965.
|
[30]
|
M. Taylor, P. L. Simon, D. M. Green, T. House and I. Z. Kiss, From Markovian to pairwise epidemic models and the performance of moment closure approximations, Journal of Mathematical Biology, 64 (2012), 1021-1042.
doi: 10.1007/s00285-011-0443-3.
|
[31]
|
P. Van Mieghem, The n-intertwined SIS epidemic network model, Computing, 93 (2011), 147-169.
doi: 10.1007/s00607-011-0155-y.
|
[32]
|
P. Van Mieghem, J. Omic and R. Kooij, Virus spread in networks, Networking, IEEE/ACM Transactions, 17 (2009), 1-14.
doi: 10.1109/TNET.2008.925623.
|