|
M. Banegje
and S. Petrovski
, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, J. Theor. Biol., 4 (2011)
, 37-53.
|
|
P. Begon, J. L. Harper and P. R. Townsend, Ecology: Individuals, Populations and Communities, Blackwell Scientific Publications Oxford, 1986.
|
|
A. V. Budyansky
and V. G. Tsybulin
, Impact of directed migration on formation of spatial structures of populations, Biophysics, 60 (2015)
, 622-631.
|
|
C. Cosner, Beyond diffusion: Conditional dispersal in ecological models, In: Infinite dimensional dynamical systems. Fields Institute Commun., 64 (2013), 305-317.
doi: 10.1007/978-1-4614-4523-4_12.
|
|
C. Cosner
, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete and Continuous Dynamical Systems - Series A, 34 (2014)
, 1701-1745.
doi: 10.3934/dcds.2014.34.1701.
|
|
C. Cosner and R. Cantrell, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley and Sons Ltd, Chichester. 2003.
doi: 10.1002/0470871296.
|
|
A. V. Epifanov
and V. G. Tsybulin
, Modeling of oscillatory scenarios of the coexistence of competing populations, Biophysics, 61 (2016)
, 696-704.
doi: 10.1134/S0006350916040072.
|
|
A. R.
, Fisher The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937)
, 353-369.
|
|
K. Frischmuth
and V. G. Tsybulin
, Families of equilibria and dynamics in a population kinetics model with cosymmetry, Phys. Lett. A, 338 (2005)
, 51-59.
doi: 10.1016/j.physleta.2005.02.015.
|
|
K. Frischmuth
, E. S. Kovaleva
and V. G. Tsybulin
, Family of equilibria in a population kinetics model and its collapse, Nonlinear Analysis: Real World Applications, 12 (2011)
, 146-155.
doi: 10.1016/j.nonrwa.2010.06.004.
|
|
G. F. Gause, The struggle for existence, Soil Science, 41 (1936), p159.
doi: 10.1097/00010694-193602000-00018.
|
|
R. Gejji
, Y. Lou
, D. Munther
and J. Peyton
, Evolutionary convergence to ideal free dispersal strategies and coexistence, Bull. Math. Biol., 74 (2012)
, 257-299.
doi: 10.1007/s11538-011-9662-4.
|
|
V. N. Govorukhin, A. B. Morgulis and Yu. V. Tyutyunov, Slow taxis in a predator-prey model, Dokl. Math., 61 (2000), 420-422; (Translated from Dokl. Akad. Nauk, 372 (2000), 730-732).
|
|
T. Hillen
and K. J. Painter
, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.
|
|
E. Keller
and L. A. Segel
, Model for chemotaxis, J. Theor. Biol, 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.
|
|
A. Kolmogorov
, I. Petrovskii
and N. Piscounov
, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Bull. Moscow Univ., Math. Mech., 1 (1937)
, 1-25.
|
|
L. Korobenko
and E. Braverman
, On logistic models with a carrying capacity dependent diffusion: Stability of equilibria and coexistence with a regularly diffusing population, Nonlinear Analysis: Real World Applications, 13 (2012)
, 2648-2658.
doi: 10.1016/j.nonrwa.2011.12.027.
|
|
K.-Y. Lam
and Y. Lou
, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76 (2014)
, 261-291.
doi: 10.1007/s11538-013-9901-y.
|
|
K.-Y. Lam
, Y. Lou
and F. Frithjof Lutscher
, The emergence of range limits in advective environments, SIAM J. Appl. Math., 76 (2016)
, 641-662.
doi: 10.1137/15M1027887.
|
|
Y. Lou
, D. Xiao
and P. Zhou
, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete and Continuous Dynamical Systems - Series A, 36 (2016)
, 953-969.
doi: 10.3934/dcds.2016.36.953.
|
|
M. A. McPeek
and R. D. Holt
, The evolution of dispersal in spatially and temporally varying environments, Am. Nat., 140 (1992)
, 1010-1027.
doi: 10.1086/285453.
|
|
J. D. Murray, Mathematical Biology Ⅱ. Spatial models and Biomedical Applications, Springer-Verlag, 2003.
|
|
V. Volterra, Leçons Sur la Théorie Mathématique de la Lutte Pour La Vie, Éditions Jacques Gabay, Sceaux, 1990.
|
|
L. Xue
, Pattern formation in a predator-prey model with spatial effects, Physica A., 391 (2012)
, 5987-5996.
doi: 10.1016/j.physa.2012.06.029.
|
|
V. I. Yudovich
, Cosymmetry, degeneracy of the solutions of operator equations and the onset of filtrational convection, Math. Notes, 49 (1991)
, 540-545.
doi: 10.1007/BF01142654.
|
|
V. I. Yudovich
, Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it, Chaos, 5 (1995)
, 402-411.
doi: 10.1063/1.166110.
|
|
V. I. Yudovich
, Bifurcations under perturbations violating cosymmetry, Physics-Doklady, 49 (2004)
, 522-526.
doi: 10.1134/1.1810578.
|
|
X.-C. Zhang
, G.-Q. Sun
and Z. Jin
, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Dynam. Systems Appl., 20 (2011)
, 1-15.
|