\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation

  • * Corresponding author: Liangjian Hu

    * Corresponding author: Liangjian Hu 

The author Wei Mao is supported by the National Natural Science Foundation of China (11401261) and "333 High-level Personnel Training Project" of Jiangsu Province. The author Liangjian Hu is supported by the National Natural Science Foundation of China (11471071). The author Xuerong Mao is supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we are concerned with the asymptotic properties and numerical analysis of the solution to hybrid stochastic differential equations with jumps. Applying the theory of M-matrices, we will study the $ p $th moment asymptotic boundedness and stability of the solution. Under the non-linear growth condition, we also show the convergence in probability of the Euler-Maruyama approximate solution to the true solution. Finally, some examples are provided to illustrate our new results.

    Mathematics Subject Classification: Primary: 60H10, 65C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   S. Albeverio , Z. Brzezniak  and  J. Wu , Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl., 371 (2010) , 309-322.  doi: 10.1016/j.jmaa.2010.05.039.
      W. J. Anderson, Continuous-Time Markov Chains, Springer, Berlin, 1991. doi: 10.1007/978-1-4612-3038-0.
      D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323.
      D. Applebaum  and  M. Siakalli , Asymptotic stability of stochastic differential equations driven by Levy noise, J. Appl. Probab., 46 (2009) , 1116-1129.  doi: 10.1239/jap/1261670692.
      J. Bao , B. Bottcher , X. Mao  and  C. Yuan , Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math., 236 (2011) , 119-131.  doi: 10.1016/j.cam.2011.05.043.
      M. Baran , Approximations for solutions of Levy-Type Stochastic Differential Equations, Stochastic Analysis and Applications., 27 (2009) , 924-961.  doi: 10.1080/07362990903136447.
      N. Bruti-Liberati  and  E. Platen , Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 205 (2007) , 982-1001.  doi: 10.1016/j.cam.2006.03.040.
      A. Gardon , The order of approximations for solutions of Ito-type stochastic differential equations with jumps, Stoch. Anal. Appl., 22 (2004) , 679-699.  doi: 10.1081/SAP-120030451.
      D. J. Higham  and  P. Kloeden , Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math., 101 (2005) , 101-119.  doi: 10.1007/s00211-005-0611-8.
      L. Hu , X. Mao  and  Y. Shen , Stability and boundedness of nonlinear hybrid stochastic differential delay equations, Syst. Control. Lett., 62 (2013) , 178-187.  doi: 10.1016/j.sysconle.2012.11.009.
      L. Hu , X. Mao  and  L. Zhang , Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations, IEEE Trans. Automa. Control., 58 (2013) , 2319-2332.  doi: 10.1109/TAC.2013.2256014.
      J. Jakubowski  and  M. Nieweglowski , Jump-diffusion processes in random environments, J. Differential Equations., 257 (2014) , 2671-2703.  doi: 10.1016/j.jde.2014.05.052.
      R. Z. Khasminskii, Stochastic Stability of Differential Equations, Stijhoff and Noordhoff, Alphen, 1980.
      H. Kunita , Stochastic diffrential equations based on Lévy processes and stochastic flows of diffomorphisms in Real and Stochastic Analysis, New Perspectives, Berlin, (2004) , 305-373. 
      X. Li , X. Mao  and  Y. Shen , Approximate solutions of stochastic differential delay equations with Markovian switching, J. Difference Equ. Appl., 16 (2010) , 195-207.  doi: 10.1080/10236190802695456.
      L. Liu , Y. Shen  and  F. Jiang , The almost sure asymptotic stability and pth moment asymptotic stability of nonlinear stochastic differential systems with polynomial growth, IEEE Trans. Automa. Control., 56 (2011) , 1985-1990.  doi: 10.1109/TAC.2011.2146970.
      J. Luo  and  K. Liu , Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl., 118 (2008) , 864-895.  doi: 10.1016/j.spa.2007.06.009.
      X. Mao , LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 236 (1999) , 350-369.  doi: 10.1006/jmaa.1999.6435.
      X. Mao , A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002) , 125-142.  doi: 10.1006/jmaa.2001.7803.
      X. Mao  and  M. Rassias , Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005) , 1045-1069.  doi: 10.1080/07362990500118637.
      X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College, London, 2006. doi: 10.1142/p473.
      X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.
      X. Mao , Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions, Appl. Math. Comput., 217 (2011) , 5512-5524.  doi: 10.1016/j.amc.2010.12.023.
      G. Marion , X. Mao  and  E. Renshaw , Convergence of the Euler shceme for a class of stochastic Differential Equations, International Mathematical Journal., 1 (2002) , 9-22. 
      M. Milosevic , Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Appl. Math. Comput., 237 (2014) , 672-685.  doi: 10.1016/j.amc.2014.03.132.
      E. Mordecki , A. Szepessy  and  R. Tempone , Adaptive weak approximation of diffusions with jumps, SIAM Journal on Numerical Analysis., 46 (2008) , 1732-1768.  doi: 10.1137/060669632.
      B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer, Berlin, 2005.
      E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. doi: 10.1007/978-3-642-13694-8.
      V. Popov, Hyperstability of control system, Springer, Berlin, 1973.
      S. T. Rong, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, Berlin, 2005.
      M. Song , L. Hu  and  X. Mao , Khasminskii-Type theorems for stochastic functional differential equations, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013) , 1697-1714.  doi: 10.3934/dcdsb.2013.18.1697.
      I. S. Wee , Stability for multidimensional jump-diffusion processes, Stochastic Process. Appl., 80 (1999) , 193-209.  doi: 10.1016/S0304-4149(98)00078-7.
      F. Wu  and  S. Hu , Suppression and stabilisation of noise, Internat. J. Control., 82 (2009) , 2150-2157.  doi: 10.1080/00207170902968108.
      F. Wu  and  S. Hu , Stochastic suppression and stabilization of delay differential systems, International Journal of Robust and Nonlinear Control., 21 (2011) , 488-500.  doi: 10.1002/rnc.1606.
      F. Wu  and  S. Hu , The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay, Discrete and Continuous Dynamical Systems, 32 (2012) , 1065-1094. 
      F. Xi , On the stability of a jump-diffusions with Markovian switching, J. Math. Anal. Appl., 341 (2008) , 588-600.  doi: 10.1016/j.jmaa.2007.10.018.
      F. Xi , Asymptotic properties of jump-diffusion processes with state-dependent switching, Stoch. Process. Appl., 119 (2009) , 2198-2221.  doi: 10.1016/j.spa.2008.11.001.
      F. Xi  and  G. Yin , Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching, J. Math. Anal. Appl., 400 (2013) , 460-474.  doi: 10.1016/j.jmaa.2012.10.062.
      Z. Yang  and  G. Yin , Stability of nonlinear regime-switching jump diffusion, Nonlinear Anal., 75 (2012) , 3854-3873.  doi: 10.1016/j.na.2012.02.007.
      G. Yin and C. Zhu, Hybrid Switching Diffusion: Properties and Applications, Springer, New York, 2010. doi: 10.1007/978-1-4419-1105-6.
      G. Yin  and  F. Xi , Stablity of regime-switching jump diffusions, SIAM J. Control Optim., 48 (2010) , 4525-4549.  doi: 10.1137/080738301.
      S. You , W. Mao , X. Mao  and  L. Hu , Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients, Appl. Math. Comput., 263 (2015) , 73-83.  doi: 10.1016/j.amc.2015.04.022.
      C. Yuan  and  W. Glover , Approximate solutions of stochastic differential delay equations with Markovian switching, J. Comput. Appl. Math., 194 (2006) , 207-226.  doi: 10.1016/j.cam.2005.07.004.
      C. Yuan  and  J. Bao , On the exponential stability of switching-diffusion processes with jumps, Quart. Appl. Math., 71 (2013) , 311-329.  doi: 10.1090/S0033-569X-2012-01292-8.
      S. Zhou , M. Xue  and  F. Wu , Robustness of hybrid neutral differential systems perturbed by noise, Journal of Systems Science and Complexity, 27 (2014) , 1138-1157.  doi: 10.1007/s11424-014-2037-9.
      Q. Zhu , Asymptotic stability in the pth moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014) , 126-142.  doi: 10.1016/j.jmaa.2014.02.016.
  • 加载中
SHARE

Article Metrics

HTML views(1134) PDF downloads(380) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return