• Previous Article
    Dirac-concentrations in an integro-pde model from evolutionary game theory
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments
February  2019, 24(2): 719-735. doi: 10.3934/dcdsb.2018204

The Rothe method for multi-term time fractional integral diffusion equations

1. 

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 610225, Sichuan Province, China

2. 

Jagiellonian University in Krakow, Chair of Optimization and Control, ul. Lojasiewicza 6, 30348 Krakow, Poland

3. 

Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30348 Krakow, Poland

* Corresponding author: Shengda Zeng

Dedicated to Professor Zhenhai Liu on the occasion of his 60th birthday.

Received  July 2017 Revised  February 2018 Published  February 2019 Early access  June 2018

Fund Project: Project supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0.

In this paper we study a class of multi-term time fractional integral diffusion equations. Results on existence, uniqueness and regularity of a strong solution are provided through the Rothe method. Several examples are given to illustrate the applicability of main results.

Citation: Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204
References:
[1]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Models and Numerical Methods, World Scientific, Boston, 2012.

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Math. Sci. Engrg., 190, London, 1993.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[6]

V. J. ErvinN. Heuer and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572-591.  doi: 10.1137/050642757.

[7]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Americal Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002.

[8]

R. Herrmann, Fractional Calculus: An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. doi: 10.1142/8934.

[9]

J. Kačur, Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities, Czechoslovak Mathematical Journal, 34 (1984), 92-106. 

[10]

J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80, B. G. Teubner, Leipzig, 1985.

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[12]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.

[13]

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.

[14]

Z. H. LiuS. D. Zeng and Y. R. Bai, Maximum principles for multi-term space-time variable order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal., 19 (2016), 188-211.  doi: 10.1515/fca-2016-0011.

[15]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, London, 2010. doi: 10.1142/9781848163300.

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[17]

A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19]

A. Raheem and D. Bahuguna, Rothe's method for solving some fractional integral diffusion equation, Appl. Math. Comput., 236 (2014), 161-168.  doi: 10.1016/j.amc.2014.03.025.

[20]

S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36 (1980), 147-168.  doi: 10.1016/0022-1236(80)90097-X.

[21]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2005.

[22]

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[23]

Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 69 (2008), 637-646.  doi: 10.1016/j.na.2007.06.011.

[24]

Y. B. Xiao and N. J. Huang, Sub-super-solution method for a class of higher order evolution hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 71 (2009), 558-570.  doi: 10.1016/j.na.2008.10.093.

[25]

Q. YangI. TurnerF. Liu and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), 1159-1180.  doi: 10.1137/100800634.

[26]

E. Zeidler, Nonlinear Functional Analysis and Applications Ⅱ A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[27]

S. D. ZengD. BaleanuY. R. Bai and G. C. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.

[28]

S. D. Zeng and S. Migórski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.

[29]

S. D. Zeng, Z. H. Liu and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69: 36 (2018), 1-23, in press. https://doi.org/10.1007/s00033-018-0929-6. doi: 10.1007/s00033-018-0929-6.

[30]

S. D. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 34-48.  doi: 10.1016/j.cnsns.2017.07.016.

[31]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.

show all references

Dedicated to Professor Zhenhai Liu on the occasion of his 60th birthday.

References:
[1]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Models and Numerical Methods, World Scientific, Boston, 2012.

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Math. Sci. Engrg., 190, London, 1993.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.

[4]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.

[6]

V. J. ErvinN. Heuer and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), 572-591.  doi: 10.1137/050642757.

[7]

W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, Americal Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002.

[8]

R. Herrmann, Fractional Calculus: An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. doi: 10.1142/8934.

[9]

J. Kačur, Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities, Czechoslovak Mathematical Journal, 34 (1984), 92-106. 

[10]

J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80, B. G. Teubner, Leipzig, 1985.

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[12]

X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108-2131.  doi: 10.1137/080718942.

[13]

Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.  doi: 10.1016/j.jcp.2007.02.001.

[14]

Z. H. LiuS. D. Zeng and Y. R. Bai, Maximum principles for multi-term space-time variable order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal., 19 (2016), 188-211.  doi: 10.1515/fca-2016-0011.

[15]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, London, 2010. doi: 10.1142/9781848163300.

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[17]

A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19]

A. Raheem and D. Bahuguna, Rothe's method for solving some fractional integral diffusion equation, Appl. Math. Comput., 236 (2014), 161-168.  doi: 10.1016/j.amc.2014.03.025.

[20]

S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36 (1980), 147-168.  doi: 10.1016/0022-1236(80)90097-X.

[21]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2005.

[22]

M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[23]

Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 69 (2008), 637-646.  doi: 10.1016/j.na.2007.06.011.

[24]

Y. B. Xiao and N. J. Huang, Sub-super-solution method for a class of higher order evolution hemivariational inequalities, Nonlinear Anal. Theory Methods and Appl., 71 (2009), 558-570.  doi: 10.1016/j.na.2008.10.093.

[25]

Q. YangI. TurnerF. Liu and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), 1159-1180.  doi: 10.1137/100800634.

[26]

E. Zeidler, Nonlinear Functional Analysis and Applications Ⅱ A/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[27]

S. D. ZengD. BaleanuY. R. Bai and G. C. Wu, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.

[28]

S. D. Zeng and S. Migórski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, J. Math. Anal. Appl., 455 (2017), 619-637.  doi: 10.1016/j.jmaa.2017.05.072.

[29]

S. D. Zeng, Z. H. Liu and S. Migórski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys., 69: 36 (2018), 1-23, in press. https://doi.org/10.1007/s00033-018-0929-6. doi: 10.1007/s00033-018-0929-6.

[30]

S. D. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 34-48.  doi: 10.1016/j.cnsns.2017.07.016.

[31]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems, 27 (2011), 035010, 12 pp. doi: 10.1088/0266-5611/27/3/035010.

[1]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[2]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[3]

Dieter Bothe, Petra Wittbold. Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2239-2260. doi: 10.3934/cpaa.2012.11.2239

[4]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[5]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[6]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[7]

Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072

[8]

Antoine Hochart. An accretive operator approach to ergodic zero-sum stochastic games. Journal of Dynamics and Games, 2019, 6 (1) : 27-51. doi: 10.3934/jdg.2019003

[9]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[10]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[11]

Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016

[12]

Jianguo Huang, Sen Lin. A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes. Electronic Research Archive, 2020, 28 (2) : 911-933. doi: 10.3934/era.2020048

[13]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

[14]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[15]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[16]

Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021313

[17]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[18]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[19]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (398)
  • HTML views (508)
  • Cited by (0)

Other articles
by authors

[Back to Top]