|
WHO, July 2017, HIV/AIDS. Geneva: World Health Organization, http://www.who.int/mediacentre/factsheets/fs360/en/.
|
|
A. Alshorman
, X. Wang
, M. J. Meyer
and L. Rong
, Analysis of HIV models with two time delays, J. Biol. Dyn., 11 (2017)
, 40-64.
doi: 10.1080/17513758.2016.1148202.
|
|
S. Bonhoeffer
, R. M. May
, G. M. Shaw
and M. A. Nowak
, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997)
, 6971-6976.
doi: 10.1073/pnas.94.13.6971.
|
|
D. S. Callaway
and A. S. Perelson
, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002)
, 29-64.
doi: 10.1006/bulm.2001.0266.
|
|
S. S. Chen
, C. Y. Cheng
and Y. Takeuchi
, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016)
, 642-672.
doi: 10.1016/j.jmaa.2016.05.003.
|
|
R. V. Culshaw
and S. Ruan
, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000)
, 27-39.
doi: 10.1016/S0025-5564(00)00006-7.
|
|
R. J. De Boer
and A. S. Perelson
, Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol., 190 (1998)
, 201-214.
|
|
P. De Leenheer
and H. L. Smith
, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003)
, 1313-1327.
doi: 10.1137/S0036139902406905.
|
|
N. M. Dixit
and A. S. Perelson
, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay, J. Theor. Biol., 226 (2004)
, 95-109.
doi: 10.1016/j.jtbi.2003.09.002.
|
|
Y. Dong and W. Ma, Global properties for a class of latent HIV infection dynamics model with CTL immune response, Int. J. Wavelets Multiresolut. Inf. Process., 10 (2012), 1250045 (19 pages).
doi: 10.1142/S0219691312500452.
|
|
D. Ebert
, C. D. Zschokke-Rohringer
and H. J. Carius
, Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000)
, 200-209.
doi: 10.1007/PL00008847.
|
|
D. Finzi, J. Blankson and J. D. Siliciano et al., Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy, Nat. Med., 5 (1999), 512–517.
doi: 10.1038/8394.
|
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
|
A. V. M. Herz
, S. Bonhoeffer
, R. M. Anderson
, R. M. May
and M. A. Nowak
, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93 (1996)
, 7247-7251.
doi: 10.1073/pnas.93.14.7247.
|
|
G. Huang
, Y. Takeuchi
and W. Ma
, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010)
, 2693-2708.
doi: 10.1137/090780821.
|
|
G. Huang
, Y. Takeuchi
, W. Ma
and D. Wei
, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010)
, 1192-1207.
doi: 10.1007/s11538-009-9487-6.
|
|
G. Huang
and Y. Takeuchi
, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011)
, 125-139.
doi: 10.1007/s00285-010-0368-2.
|
|
X. Lai
and X. Zou
, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74 (2014)
, 898-917.
doi: 10.1137/130930145.
|
|
B. Li
, Y. Chen
, X. Lu
and S. Liu
, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13 (2016)
, 135-157.
doi: 10.3934/mbe.2016.13.135.
|
|
M. Y. Li
and H. Shu
, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010)
, 2434-2448.
doi: 10.1137/090779322.
|
|
D. Li
and W. Ma
, Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl., 335 (2007)
, 683-691.
doi: 10.1016/j.jmaa.2007.02.006.
|
|
M. Markowitz
, M. Louie
, A. Hurley
, E. Sun
, M. D. Mascio
, A. S. Perelson
and D. D. Ho
, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003)
, 5037-5038.
doi: 10.1128/JVI.77.8.5037-5038.2003.
|
|
C. C. McCluskey
and Y. Yang
, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. RWA, 25 (2015)
, 64-78.
doi: 10.1016/j.nonrwa.2015.05.003.
|
|
C. C. McCluskey
, Using Lyapunov functions to construct Lyapunov functionals for delay differential equations, SIAM J. Appl. Dyn. Syst., 14 (2014)
, 1-24.
doi: 10.1137/140971683.
|
|
C. C. McCluskey
, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. RWA, 11 (2010)
, 55-59.
doi: 10.1016/j.nonrwa.2008.10.014.
|
|
C. C. McCluskey
, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11 (2010)
, 3106-3109.
doi: 10.1016/j.nonrwa.2009.11.005.
|
|
A. R. McLean
and C. J. Bostock
, Scrapie infections initiated at varying doses: An analysis of 117 titration experiments, Philos. Trans. R. Soc. Lond. B Biol. Sci., 355 (2000)
, 1043-1050.
doi: 10.1098/rstb.2000.0641.
|
|
H. Miao
, Z. Teng
and C. Kang
, Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017)
, 2365-2387.
doi: 10.3934/dcdsb.2017121.
|
|
J. E. Mittler
, B. Sulzer
, A. U. Neumann
and A. S. Perelson
, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152 (1998)
, 143-163.
doi: 10.1016/S0025-5564(98)10027-5.
|
|
H. Mohri
, S. Bonhoeffer
, S. Monard
, A. S. Perelson
and D. D. Ho
, Rapid turnover of T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998)
, 1223-1227.
doi: 10.1126/science.279.5354.1223.
|
|
V. Müller
, J. F. Vigueras-Gómez
and S. Bonhoeffer
, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, J. Virol., 76 (2002)
, 8963-8965.
|
|
P. W. Nelson
, J. D. Murray
and A. S. Perelson
, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000)
, 201-215.
doi: 10.1016/S0025-5564(99)00055-3.
|
|
P. Nelson
and A. S. Perelson
, Mathematica analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002)
, 73-94.
doi: 10.1016/S0025-5564(02)00099-8.
|
|
M. A. Nowak
and C. R. M. Bangham
, Population dynamics of immune responses to persistent viruses, Science, 272 (1996)
, 74-79.
doi: 10.1126/science.272.5258.74.
|
|
M. A. Nowak
, S. Bonhoeffer
, G. M. Shaw
and R. M. May
, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997)
, 203-217.
doi: 10.1006/jtbi.1996.0307.
|
|
Y. Otani
, T. Kajiwara
and T. Sasaki
, Lyapunov functionals for virus-immune models with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 3093-3114.
doi: 10.3934/dcdsb.2015.20.3093.
|
|
Y. Otani
, T. Kajiwara
and T. Sasaki
, Lyapunov functionals for multistrain models with infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2011)
, 507-536.
doi: 10.3934/dcdsb.2017025.
|
|
K. A. Pawelek
, S. Liu
, F. Pahlevani
and L. Rong
, A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012)
, 98-109.
doi: 10.1016/j.mbs.2011.11.002.
|
|
A. S. Perelson
and P. W. Nelson
, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999)
, 3-44.
doi: 10.1137/S0036144598335107.
|
|
A. S. Perelson
and R. M. Ribeiro
, Modeling the within-host dynamics of HIV infection, BMC Biol., 11 (2013)
, 96-105.
doi: 10.1186/1741-7007-11-96.
|
|
A. S. Perelson
, A. U. Neumann
, M. Markowitz
, J. M. Leonard
and D. D. Ho
, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996)
, 1582-1586.
doi: 10.1126/science.271.5255.1582.
|
|
A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen and A. Hurley, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188–191.
doi: 10.1038/387188a0.
|
|
A. S. Perelson
, D. E. Kirschner
and R. De Boer
, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993)
, 81-125.
doi: 10.1016/0025-5564(93)90043-A.
|
|
R. R. Regoes
, D. Ebert
and S. Bonhoeffer
, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. Ser. B, 269 (2002)
, 271-279.
doi: 10.1098/rspb.2001.1816.
|
|
L. Rong
and A. S. Perelson
, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 260 (2009)
, 308-331.
doi: 10.1016/j.jtbi.2009.06.011.
|
|
L. Rong
and A. S. Perelson
, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217 (2009)
, 77-87.
doi: 10.1016/j.mbs.2008.10.006.
|
|
L. Rong and A. S. Perelson,, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol., 5 (2009), e1000533, 18pp.
doi: 10.1371/journal.pcbi.1000533.
|
|
R. P. Sigdel
and C. C. McCluskey
, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014)
, 684-689.
doi: 10.1016/j.amc.2014.06.020.
|
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Vol. 41, American Mathematical Socienty, Providence, RI, 1995.
|
|
X. Song
and A. U. Neumann
, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007)
, 281-297.
doi: 10.1016/j.jmaa.2006.06.064.
|
|
Y. Tian
, Y. Bai
and P. Yu
, Impact of delay on HIV-1 dynamics of fighting a virus with another virus, Math. Biosci. Eng., 11 (2014)
, 1181-1198.
doi: 10.3934/mbe.2014.11.1181.
|
|
P. van den Driessche
and J. Watmough
, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002)
, 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
|
Y. Wang
, F. Brauer
, J. Wu
and J. M. Heffernan
, A delay-dependent model with HIV drug resistance during therapy, J. Math. Anal. Appl., 414 (2014)
, 514-531.
doi: 10.1016/j.jmaa.2013.12.064.
|
|
L. Wang
and M. Li
, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006)
, 44-57.
doi: 10.1016/j.mbs.2005.12.026.
|
|
X. Wang
, S. Tang
, X. Song
and L. Rong
, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyn., 11 (2017)
, 455-483.
doi: 10.1080/17513758.2016.1242784.
|
|
J. Xu
and Y. Zhou
, Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay, Math. Biosci. Eng., 13 (2016)
, 343-367.
doi: 10.3934/mbe.2015006.
|
|
Y. Yang
, L. Zou
and S. Ruan
, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015)
, 183-191.
doi: 10.1016/j.mbs.2015.05.001.
|