In this paper we consider an $n$ dimensional piecewise smooth dynamical system. This system has a co-dimension 2 switching manifold Σ which is an intersection of two co-dimension one switching manifolds Σ1 and Σ2. We investigate the relation of periodic orbit of PWS between periodic orbit of its regularized system. If this PWS system has an asymptotically stable crossing periodic orbit γ or sliding periodic orbit, we establish conditions to ensure that also a regularization of the given system has a unique, asymptotically stable, limit cycle in a neighbourhood of γ, converging to γ as the regularization parameter goes to 0.
Citation: |
J. Alexander
and T. Seidman
, Sliding modes in intersecting switching surfaces. I. Blending, Houston J. Math., 24 (1998)
, 545-569.
![]() ![]() |
|
A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, UK, 1996.
![]() ![]() |
|
M. Di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. 163, Springer-Verlag, London, 2008.
![]() ![]() |
|
C. A. Buzzi, T. De Carvalho and R. D. Euzébio, On Poincaré-Bendixson Theorem and nontrivial minimal sets in planar nonsmooth vector fields, Publ. Mat., 62 (2018), 113–131, arXiv: 1307.6825v1 [math. DS].
doi: 10.5565/PUBLMAT6211806.![]() ![]() ![]() |
|
C. A. Buzzi
, T. De Carvalho
and P. R. Da Silva
, Closed Poly-trajectories and Poincaré index of non-smooth vector fields on the plane, J. Dyn. Control. Sys., 19 (2013)
, 173-193.
doi: 10.1007/s10883-013-9169-4.![]() ![]() ![]() |
|
C. A. Buzzi
, T. De Carvalho
and M. A. Teixeira
, Birth of limit cycles bifurcating from a nonsmooth center, J. Math. Pure. Appl., 102 (2014)
, 36-47.
doi: 10.1016/j.matpur.2013.10.013.![]() ![]() ![]() |
|
L. Dieci
and F. Difonzo
, A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014)
, 161-179.
doi: 10.1016/j.cam.2013.10.055.![]() ![]() |
|
L. Dieci
and C. Elia
, Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can we say what should happen?, DCDS -S, 9 (2016)
, 1039-1068.
doi: 10.3934/dcdss.2016041.![]() ![]() ![]() |
|
L. Dieci
, C. Elia
and L. Lopez
, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis, J. Differential Equations, 254 (2013)
, 1800-1832.
doi: 10.1016/j.jde.2012.11.007.![]() ![]() ![]() |
|
L. Dieci
, C. Elia
and L. Lopez
, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbb{R}^3$ and implications for stability of periodic orbits, J. Nonlinear Sci., 25 (2015)
, 1453-1471.
doi: 10.1007/s00332-015-9265-6.![]() ![]() ![]() |
|
L. Dieci
, C. Elia
and D. Pi
, Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity, DCDS-B, 22 (2017)
, 3091-3112.
doi: 10.3934/dcdsb.2017165.![]() ![]() ![]() |
|
L. Dieci
and L. Lopez
, Fundamental matrix solutions of piecewise smooth differential systems, Math. Comput. Simulation, 81 (2011)
, 932-953.
doi: 10.1016/j.matcom.2010.10.012.![]() ![]() ![]() |
|
L. Dieci
and N. Guglielmi
, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface, J. Dynam. Differential Equations, 25 (2013)
, 71-94.
doi: 10.1007/s10884-013-9287-4.![]() ![]() ![]() |
|
Z. Du
and Y. Li
, Bifurcation of periodic orbits with multiple crossings in a class of planar Filippov systems, Math. Comput. Modelling, 55 (2012)
, 1072-1082.
doi: 10.1016/j.mcm.2011.09.032.![]() ![]() ![]() |
|
A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer Academic, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
|
R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 18, Springer-verlag, Berlin, 2004.
doi: 10.1007/978-3-540-44398-8.![]() ![]() ![]() |
|
J. Llibre
, P. da Silva
and M. A. Teixeira
, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, J. Dynam. Differential Equations, 19 (2007)
, 309-331.
doi: 10.1007/s10884-006-9057-7.![]() ![]() ![]() |
|
J. Llibre
, P. R. da Silva
and M. A. Teixeira
, Sliding vector fields via slow-fast systems, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008)
, 851-869.
![]() ![]() |
|
J. Llibre
, P. R. da Silva
and M. A. Teixeira
, Study of singularities in nonsmooth dynamical systems via singular perturbation, SIAM. J. Applied Dynam. Sys., 8 (2009)
, 508-526.
doi: 10.1137/080722886.![]() ![]() ![]() |
|
P. C. Müller
, Calculation of lyapunov exponents for dynamic systems with discontinuities, Chaos, Solitons and Fractals, 5 (1995)
, 1671-1681.
doi: 10.1016/0960-0779(94)00170-U.![]() ![]() ![]() |
|
D. Pi
and X. Zhang
, The sliding bifurcations in planar piecewise smooth differential systems, J. Dynam. Differential Equations, 25 (2013)
, 1001-1026.
doi: 10.1007/s10884-013-9327-0.![]() ![]() ![]() |
|
L. A. Sanchez
, Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems, J. Differential Equations, 246 (2009)
, 1978-1990.
doi: 10.1016/j.jde.2008.10.015.![]() ![]() ![]() |
|
J. Sotomayor
and A. L. Machado
, Sructurally stable discontinuous vector fields on the plane, Qual. Theory of Dynamical Systems, 3 (2002)
, 227-250.
doi: 10.1007/BF02969339.![]() ![]() ![]() |
|
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, International Conference on Differential Equations, Lisboa, (1995), 207–223.
![]() ![]() |
|
S. Tang
, J. Liang
, Y. Xiao
and A. Robert
, Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J.Appl.Math., 72 (2012)
, 1061-1080.
doi: 10.1137/110847020.![]() ![]() ![]() |
|
Y. Wang
, M. Han
and D. Constantinescu
, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals, 83 (2016)
, 158-177.
![]() ![]() |
|
H. R. Zhu
and H. L. Smith
, Stable periodic orbits for a class of three-dimensional competitive systems, J. Differential Equations, 110 (1994)
, 143-156.
doi: 10.1006/jdeq.1994.1063.![]() ![]() ![]() |
Sliding periodic orbit
Crossing periodic orbit