In the past years, there were very few works on the existence of nonconstant periodic solutions with fixed energy of singular second-order Hamiltonian systems, and now we attempt to ingeniously use Ekeland's variational principle to prove the existence of nonconstant periodic solutions with any fixed energy for singular second-order Hamiltonian systems, and our results greatly generalize some well known results such as [
Citation: |
[1] |
A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Ration. Mech. Anal., 112 (1990), 339-362.
doi: 10.1007/BF02384078.![]() ![]() ![]() |
[2] |
A. Ambrosetti and V. C. Zelati, Closed orbits of fixed energy for a class of N-body problems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 187-200.
doi: 10.1016/S0294-1449(16)30244-X.![]() ![]() ![]() |
[3] |
A. Ambrosetti and V. C. Zelati,
Periodic Solutions of Singular Lagrangian Systems, Birkäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0319-3.![]() ![]() ![]() |
[4] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt,
Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 1997.
![]() ![]() |
[5] |
V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Institute H. Poincaré-Anal. Non Linéaive, 1 (1984), 379-400.
doi: 10.1016/S0294-1449(16)30419-X.![]() ![]() ![]() |
[6] |
V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273.
doi: 10.1007/BF01389883.![]() ![]() ![]() |
[7] |
M. Boughariou, Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces, Discrete Contin. Dynam. Systems, 9 (2003), 603-616.
doi: 10.3934/dcds.2003.9.603.![]() ![]() ![]() |
[8] |
C. Carminati, E. Sere and K. Tanaka, The fixed energy problem for a class of nonconvex singular Hamiltonian systems, J. Differential Equations, 230 (2006), 362-377.
doi: 10.1016/j.jde.2006.01.021.![]() ![]() ![]() |
[9] |
R. Castelli, Topologically distinct collision-free periodic solutions for the $N$
-center problem, Arch. Ration. Mech. Anal., 223 (2017), 941-975.
doi: 10.1007/s00205-016-1049-0.![]() ![]() ![]() |
[10] |
C. F. Che and X. P. Xue, Periodic solutions for second order Hamiltonian systems on an arbitrary energy surface, Ann. Pol. Math., 105 (2012), 1-12.
doi: 10.4064/ap105-1-1.![]() ![]() ![]() |
[11] |
W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., 204 (1975), 113-135.
doi: 10.1090/S0002-9947-1975-0377983-1.![]() ![]() ![]() |
[12] |
Y. M. Long and S. Q. Zhang, Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy, J. Differential Equations, 160 (2000), 422-438.
doi: 10.1006/jdeq.1999.3659.![]() ![]() ![]() |
[13] |
P. Majer and S. Terracini, Periodic solutions to some N-body type problems: the fixed energy case, Duke Math. J., 69 (1993), 683-697.
doi: 10.1215/S0012-7094-93-06929-3.![]() ![]() ![]() |
[14] |
P. Majer and S. Terracini, Periodic solutions to some problems of n-body type, Arch. Ration. Mech. Anal., 124 (1993), 381-404.
doi: 10.1007/BF00375608.![]() ![]() ![]() |
[15] |
J. Mawhin and M. Willem,
Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York-Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7.![]() ![]() ![]() |
[16] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() ![]() |
[17] |
R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322.![]() ![]() ![]() |
[18] |
L. Pisani, Periodic solutions with prescribed energy for singular conservative systems involving strong forces, Nonlinear Anal. Theor., 21 (1993), 167-179.
doi: 10.1016/0362-546X(93)90107-4.![]() ![]() ![]() |
[19] |
P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pur. Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203.![]() ![]() ![]() |
[20] |
E. M. Stein and R. Shakarchi,
Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, Princeton, 2005.
![]() ![]() |
[21] |
S. Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems, Ann. Institute H. Poincaré-Anal. Non Linéaive, 9 (1992), 597-641.
doi: 10.1016/S0294-1449(16)30224-4.![]() ![]() ![]() |
[22] |
E. Vitillaro, Periodic solutions for singular conservative systems, J. Math. Anal. Appl., 185 (1994), 403-429.
doi: 10.1006/jmaa.1994.1258.![]() ![]() ![]() |
[23] |
D. L. Wu, C. Li and P. F. Yuan, Periodic solutions for a class of second-order Hamiltonian systems of precribed energy, Electron. J. Qual. Theo., 77 (2015), 1-10.
![]() ![]() |
[24] |
S. Q. Zhang, Multiple closed orbits of fixed energy for N-body-type problems with gravitational potentials, J. Math. Anal. Appl., 208 (1997), 462-475.
doi: 10.1006/jmaa.1997.5338.![]() ![]() ![]() |
[25] |
S. Q. Zhang, Periodic solutions for some second order Hamiltonian systems, Nonlinearity, 22 (2009), 2141-2150.
doi: 10.1088/0951-7715/22/9/005.![]() ![]() ![]() |