
-
Previous Article
Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition
- DCDS-B Home
- This Issue
-
Next Article
Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections
Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise
1. | Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain |
2. | Institute for New Economic Thinking at the Oxford Martin School, Mathematical Institute, University of Oxford, Walton Well Road, Eagle House OX2 6ED, Oxford, UK |
3. | Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania |
4. | Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA |
The presence of a nonattractive chaotic set, also called chaotic saddle, in phase space implies the appearance of a finite time kind of chaos that is known as transient chaos. For a given dynamical system in a certain region of phase space with transient chaos, trajectories eventually abandon the chaotic region escaping to an external attractor, if no external intervention is done on the system. In some situations, this attractor may involve an undesirable behavior, so the application of a control in the system is necessary to avoid it. Both, the nonattractive nature of transient chaos and eventually the presence of noise may hinder this task. Recently, a new method to control chaos called partial control has been developed. The method is based on the existence of a set, called the safe set, that allows to sustain transient chaos by only using a small amount of control. The surprising result is that the trajectories can be controlled by using an amount of control smaller than the amount of noise affecting it. We present here a broad survey of results of this control method applied to a wide variety of dynamical systems. We also review here all the variations of the partial control method that have been developed so far. In all the cases various systems of different dimensionality are treated in order to see the potential of this method. We believe that this method is a step forward in controlling chaos in presence of disturbances.
References:
[1] |
J. Aguirre and M. A. F. Sanjuán,
Unpredictable behavior in the duffing oscillator: Wada Basins, Physica D, 171 (2002), 41-51.
doi: 10.1016/S0167-2789(02)00565-1. |
[2] |
D. P. Bertsekas,
Infinite-time reachability of state-space regions by using feedback control, IEEE Trans. Autom. Control, 17 (1972), 604-613.
|
[3] |
D. P. Bertsekas and I. B. Rhodes,
On the minimax reachability of target set and target tubes, Automatica, 7 (1971), 233-247.
doi: 10.1016/0005-1098(71)90066-5. |
[4] |
F. Blanchini,
Set invariance in control, Automatica, 35 (1999), 1747-1767.
doi: 10.1016/S0005-1098(99)00113-2. |
[5] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
Parametric partial control of chaotic systems, Nonlinear Dyn., 86 (2016), 869-876.
doi: 10.1007/s11071-016-2929-4. |
[6] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
When less is more: Partial control to avoid extinction of predators in an ecological model, Ecol. Complex., 19 (2014), 1-8.
|
[7] |
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partially controlling transient chaos in the Lorenz equations,
Phil. Trans. R. Soc. A, 375 (2017), 20160211, 18pp.
doi: 10.1098/rsta.2016.0211. |
[8] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
Parametric partial control of chaotic systems, Nonlinear Dyn., 2 (2016), 869-876.
doi: 10.1007/s11071-016-2929-4. |
[9] |
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke,
Partial control of delay-coordinate maps, Nonlinear Dyn, (2018), 1-11.
|
[10] |
D. Dangoisse, P. Glorieux and D. Hannequin,
Laser chaotic attractors in crisis, Phys. Rev. Lett., 57 (1986), 2657-2660.
doi: 10.1103/PhysRevLett.57.2657. |
[11] |
M. Dhamala and Y. C. Lai,
Controlling transient chaos in deterministic flows with applications. to electrical power systems and ecology, Phys. Rev. E, 59 (1999), 1646-1655.
doi: 10.1103/PhysRevE.59.1646. |
[12] |
J. Duarte, C. Januário, N. Martins and J. Sardanyés,
Chaos and crises in a model for cooperative hunting:a symbolic dynamics approach, Chaos, 58 (2009), 863-883.
|
[13] |
R. Genesio, M. Tartaglia and A. Vicino,
On the estimate of asymptotic stability regions: Stateof art and new proposal, IEEE Trans. Autom. Control, 30 (1985), 747-755.
doi: 10.1109/TAC.1985.1104057. |
[14] |
P. Holmes,
A Nonlinear Oscillator with a Strange Attractor, Phil. Trans. R. Soc. Soc. Lond. Ser. A, 292 (1979), 419-448.
doi: 10.1098/rsta.1979.0068. |
[15] |
V. Hutson and K. Schmitt,
Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.
doi: 10.1016/0025-5564(92)90078-B. |
[16] |
V. In, M. L. Spano, J. D. Neff, W. L. Ditto, C. S. Daw, K. D. Edwards and K. Nguyen,
Maintenance of chaos in a computational model of thermal pulse combustor, Chaos, 7 (1997), 605-613.
doi: 10.1063/1.166260. |
[17] |
J. Jacobs, E. Ott, T. Antonsen and J. A. Yorke,
Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps, Physica D, 110 (1997), 1-17.
doi: 10.1016/S0167-2789(97)00122-X. |
[18] |
J. L. Kaplan and J. A. Yorke,
Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93-108.
doi: 10.1007/BF01221359. |
[19] |
I. V. Kolmanovski and E. G. Gilbert, Multimode regulators for systems with state and control constraints and disturbance inputs, Control Using Logic-based Switching (Block Island, RI, 1995), 104-117, Lect. Notes Control Inf. Sci., 222, Springer, London, 1997.
doi: 10.1007/BFb0036088. |
[20] |
K. McCann and P. Yodzis,
Bifurcation structure of a three-species food chain model, Theo. Pop. Biol., 48 (1995), 93-125.
doi: 10.1006/tpbi.1995.1023. |
[21] |
M. Nagumo,
Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), 551-559.
|
[22] |
Z. Neufeld and T. Tél,
Advection in chaotically time-dependent open flows, Phys.Rev.E, 57 (1995), 2832-2842.
doi: 10.1103/PhysRevE.57.2832. |
[23] |
E. Ott, C. Grebogi and J. A. Yorke,
Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196-1199.
doi: 10.1103/PhysRevLett.64.1196. |
[24] |
M. Perc and M. Marhl,
Chaos in temporarily destabilized regular systems with the slow passage effect, Chaos Soliton Fract., 27 (2006), 395-403.
doi: 10.1016/j.chaos.2005.03.045. |
[25] |
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke,
Finding safety in partially controllable chaotic systems, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 4274-4280.
doi: 10.1016/j.cnsns.2012.02.033. |
[26] |
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Dynamics of partial control,
Chaos, 22 (2012), 047507, 9pp.
doi: 10.1063/1.4754874. |
[27] |
M. A. F. Sanjuán, J. Kennedy, C. Grebogi and J. A. Yorke,
Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders, Chaos, 7 (1997), 125-138.
doi: 10.1063/1.166244. |
[28] |
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke,
Indecomposable Continua and the characterization of strange sets in Nonlinear Dynamics, Phys. Rev. Lett., 78 (1997), 1892-1895.
|
[29] |
I. B. Schwartz and I. Triandaf,
The slow invariant manifold of a conservative pendulum-oscillator system, Int. J. Bifurcation Chaos, 6 (1996), 673-692.
|
[30] |
I. B. Schwartz and I. Triandaf,
Sustainning chaos by using basin boundary saddles, Phys. Rev. Lett., 77 (1996), 4740-4743.
|
[31] |
S.-F. Wang, X.-C. Li, F. Xia and Z.-S. Xie,
The novel control method of three dimensional discrete hyperchaotic Hénon map, Appl.Math.Comput, 247 (2014), 487-493.
doi: 10.1016/j.amc.2014.09.011. |
[32] |
W. Yang, M. Ding, A. J. Mandell and E. Ott,
Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys. Rev. E, 51 (1995), 102-110.
doi: 10.1103/PhysRevE.51.102. |
[33] |
J. A. Yorke and E. D. Yorke,
Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, J. Stat. Phys., 21 (1979), 263-277.
doi: 10.1007/BF01011469. |
show all references
References:
[1] |
J. Aguirre and M. A. F. Sanjuán,
Unpredictable behavior in the duffing oscillator: Wada Basins, Physica D, 171 (2002), 41-51.
doi: 10.1016/S0167-2789(02)00565-1. |
[2] |
D. P. Bertsekas,
Infinite-time reachability of state-space regions by using feedback control, IEEE Trans. Autom. Control, 17 (1972), 604-613.
|
[3] |
D. P. Bertsekas and I. B. Rhodes,
On the minimax reachability of target set and target tubes, Automatica, 7 (1971), 233-247.
doi: 10.1016/0005-1098(71)90066-5. |
[4] |
F. Blanchini,
Set invariance in control, Automatica, 35 (1999), 1747-1767.
doi: 10.1016/S0005-1098(99)00113-2. |
[5] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
Parametric partial control of chaotic systems, Nonlinear Dyn., 86 (2016), 869-876.
doi: 10.1007/s11071-016-2929-4. |
[6] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
When less is more: Partial control to avoid extinction of predators in an ecological model, Ecol. Complex., 19 (2014), 1-8.
|
[7] |
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke, Partially controlling transient chaos in the Lorenz equations,
Phil. Trans. R. Soc. A, 375 (2017), 20160211, 18pp.
doi: 10.1098/rsta.2016.0211. |
[8] |
R. Capeáns, J. Sabuco and M. A. F. Sanjuán,
Parametric partial control of chaotic systems, Nonlinear Dyn., 2 (2016), 869-876.
doi: 10.1007/s11071-016-2929-4. |
[9] |
R. Capeáns, J. Sabuco, M. A. F. Sanjuán and J. A. Yorke,
Partial control of delay-coordinate maps, Nonlinear Dyn, (2018), 1-11.
|
[10] |
D. Dangoisse, P. Glorieux and D. Hannequin,
Laser chaotic attractors in crisis, Phys. Rev. Lett., 57 (1986), 2657-2660.
doi: 10.1103/PhysRevLett.57.2657. |
[11] |
M. Dhamala and Y. C. Lai,
Controlling transient chaos in deterministic flows with applications. to electrical power systems and ecology, Phys. Rev. E, 59 (1999), 1646-1655.
doi: 10.1103/PhysRevE.59.1646. |
[12] |
J. Duarte, C. Januário, N. Martins and J. Sardanyés,
Chaos and crises in a model for cooperative hunting:a symbolic dynamics approach, Chaos, 58 (2009), 863-883.
|
[13] |
R. Genesio, M. Tartaglia and A. Vicino,
On the estimate of asymptotic stability regions: Stateof art and new proposal, IEEE Trans. Autom. Control, 30 (1985), 747-755.
doi: 10.1109/TAC.1985.1104057. |
[14] |
P. Holmes,
A Nonlinear Oscillator with a Strange Attractor, Phil. Trans. R. Soc. Soc. Lond. Ser. A, 292 (1979), 419-448.
doi: 10.1098/rsta.1979.0068. |
[15] |
V. Hutson and K. Schmitt,
Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.
doi: 10.1016/0025-5564(92)90078-B. |
[16] |
V. In, M. L. Spano, J. D. Neff, W. L. Ditto, C. S. Daw, K. D. Edwards and K. Nguyen,
Maintenance of chaos in a computational model of thermal pulse combustor, Chaos, 7 (1997), 605-613.
doi: 10.1063/1.166260. |
[17] |
J. Jacobs, E. Ott, T. Antonsen and J. A. Yorke,
Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps, Physica D, 110 (1997), 1-17.
doi: 10.1016/S0167-2789(97)00122-X. |
[18] |
J. L. Kaplan and J. A. Yorke,
Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93-108.
doi: 10.1007/BF01221359. |
[19] |
I. V. Kolmanovski and E. G. Gilbert, Multimode regulators for systems with state and control constraints and disturbance inputs, Control Using Logic-based Switching (Block Island, RI, 1995), 104-117, Lect. Notes Control Inf. Sci., 222, Springer, London, 1997.
doi: 10.1007/BFb0036088. |
[20] |
K. McCann and P. Yodzis,
Bifurcation structure of a three-species food chain model, Theo. Pop. Biol., 48 (1995), 93-125.
doi: 10.1006/tpbi.1995.1023. |
[21] |
M. Nagumo,
Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), 551-559.
|
[22] |
Z. Neufeld and T. Tél,
Advection in chaotically time-dependent open flows, Phys.Rev.E, 57 (1995), 2832-2842.
doi: 10.1103/PhysRevE.57.2832. |
[23] |
E. Ott, C. Grebogi and J. A. Yorke,
Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196-1199.
doi: 10.1103/PhysRevLett.64.1196. |
[24] |
M. Perc and M. Marhl,
Chaos in temporarily destabilized regular systems with the slow passage effect, Chaos Soliton Fract., 27 (2006), 395-403.
doi: 10.1016/j.chaos.2005.03.045. |
[25] |
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke,
Finding safety in partially controllable chaotic systems, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 4274-4280.
doi: 10.1016/j.cnsns.2012.02.033. |
[26] |
J. Sabuco, S. Zambrano, M. A. F. Sanjuán and J. A. Yorke, Dynamics of partial control,
Chaos, 22 (2012), 047507, 9pp.
doi: 10.1063/1.4754874. |
[27] |
M. A. F. Sanjuán, J. Kennedy, C. Grebogi and J. A. Yorke,
Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders, Chaos, 7 (1997), 125-138.
doi: 10.1063/1.166244. |
[28] |
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke,
Indecomposable Continua and the characterization of strange sets in Nonlinear Dynamics, Phys. Rev. Lett., 78 (1997), 1892-1895.
|
[29] |
I. B. Schwartz and I. Triandaf,
The slow invariant manifold of a conservative pendulum-oscillator system, Int. J. Bifurcation Chaos, 6 (1996), 673-692.
|
[30] |
I. B. Schwartz and I. Triandaf,
Sustainning chaos by using basin boundary saddles, Phys. Rev. Lett., 77 (1996), 4740-4743.
|
[31] |
S.-F. Wang, X.-C. Li, F. Xia and Z.-S. Xie,
The novel control method of three dimensional discrete hyperchaotic Hénon map, Appl.Math.Comput, 247 (2014), 487-493.
doi: 10.1016/j.amc.2014.09.011. |
[32] |
W. Yang, M. Ding, A. J. Mandell and E. Ott,
Preserving chaos: Control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys. Rev. E, 51 (1995), 102-110.
doi: 10.1103/PhysRevE.51.102. |
[33] |
J. A. Yorke and E. D. Yorke,
Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, J. Stat. Phys., 21 (1979), 263-277.
doi: 10.1007/BF01011469. |
































[1] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[2] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[3] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[4] |
Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 |
[5] |
Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633 |
[6] |
Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523 |
[7] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[8] |
Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199 |
[9] |
Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713 |
[10] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[11] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[12] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[13] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
[14] |
Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 |
[15] |
Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917 |
[16] |
Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861 |
[17] |
J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 |
[18] |
Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 |
[19] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[20] |
Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]